首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
对硅基环形电-光调制器的电学特性和光学特性进行了理论分析.给出环形电-光调制器的调制速率解析表达式.该表达式表明,环形调制器的光学谐振特性对于整个系统调制速率起重要的作用.分析得到调制速度和Q值及波导宽度的关系.并给出了定量的表达式,它可以用于器件特性的优化,同时从理论上指出该器件的理论极限调制速度大于10,GHz.  相似文献   

2.
Micrometre-scale silicon electro-optic modulator   总被引:4,自引:0,他引:4  
Xu Q  Schmidt B  Pradhan S  Lipson M 《Nature》2005,435(7040):325-327
Metal interconnections are expected to become the limiting factor for the performance of electronic systems as transistors continue to shrink in size. Replacing them by optical interconnections, at different levels ranging from rack-to-rack down to chip-to-chip and intra-chip interconnections, could provide the low power dissipation, low latencies and high bandwidths that are needed. The implementation of optical interconnections relies on the development of micro-optical devices that are integrated with the microelectronics on chips. Recent demonstrations of silicon low-loss waveguides, light emitters, amplifiers and lasers approach this goal, but a small silicon electro-optic modulator with a size small enough for chip-scale integration has not yet been demonstrated. Here we experimentally demonstrate a high-speed electro-optical modulator in compact silicon structures. The modulator is based on a resonant light-confining structure that enhances the sensitivity of light to small changes in refractive index of the silicon and also enables high-speed operation. The modulator is 12 micrometres in diameter, three orders of magnitude smaller than previously demonstrated. Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures.  相似文献   

3.
Silicon has long been the optimal material for electronics, but it is only relatively recently that it has been considered as a material option for photonics. One of the key limitations for using silicon as a photonic material has been the relatively low speed of silicon optical modulators compared to those fabricated from III-V semiconductor compounds and/or electro-optic materials such as lithium niobate. To date, the fastest silicon-waveguide-based optical modulator that has been demonstrated experimentally has a modulation frequency of only approximately 20 MHz (refs 10, 11), although it has been predicted theoretically that a approximately 1-GHz modulation frequency might be achievable in some device structures. Here we describe an approach based on a metal-oxide-semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation: we demonstrate an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz. As this technology is compatible with conventional complementary MOS (CMOS) processing, monolithic integration of the silicon modulator with advanced electronics on a single silicon substrate becomes possible.  相似文献   

4.
 近红外波段的电光调制器是未来光信号处理和计算系统中的关键功能元器件,硅基石墨烯电光调制器在结构尺寸、调制速率、调制带宽及大规模片上集成等方面具有诸多潜在优点而引起人们的广泛关注和重视。本文介绍了石墨烯的光电特性及光调制机理,结合石墨烯在近红外波段电光调制器中的研究及应用,综述了国内外近红外波段硅基石墨烯电光调制器的研究进展,重点叙述了条形波导结构、谐振结构、纳米梁结构的电光调制器的工作原理及各器件的特性,展望了硅基石墨烯电光调制器的研究方向。  相似文献   

5.
Kuo YH  Lee YK  Ge Y  Ren S  Roth JE  Kamins TI  Miller DA  Harris JS 《Nature》2005,437(7063):1334-1336
Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such components with optoelectronics for telecommunications and computer interconnections. Silicon-based optical modulators have recently been successfully demonstrated; but because the light modulation mechanisms in silicon are relatively weak, long (for example, several millimetres) devices or sophisticated high-quality-factor resonators have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger quantum-confined Stark effect (QCSE) mechanism, which allows modulator structures with only micrometres of optical path length. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics, but previous silicon-germanium structures have also not shown strong modulation effects. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor; such semiconductors often display much weaker optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed, low-power optical output devices fully compatible with silicon electronics manufacture.  相似文献   

6.
An all-silicon Raman laser   总被引:4,自引:0,他引:4  
Rong H  Liu A  Jones R  Cohen O  Hak D  Nicolaescu R  Fang A  Paniccia M 《Nature》2005,433(7023):292-294
The possibility of light generation and/or amplification in silicon has attracted a great deal of attention for silicon-based optoelectronic applications owing to the potential for forming inexpensive, monolithic integrated optical components. Because of its indirect bandgap, bulk silicon shows very inefficient band-to-band radiative electron-hole recombination. Light emission in silicon has thus focused on the use of silicon engineered materials such as nanocrystals, Si/SiO2 superlattices, erbium-doped silicon-rich oxides, surface-textured bulk silicon and Si/SiGe quantum cascade structures. Stimulated Raman scattering (SRS) has recently been demonstrated as a mechanism to generate optical gain in planar silicon waveguide structures. In fact, net optical gain in the range 2-11 dB due to SRS has been reported in centimetre-sized silicon waveguides using pulsed pumping. Recently, a lasing experiment involving silicon as the gain medium by way of SRS was reported, where the ring laser cavity was formed by an 8-m-long optical fibre. Here we report the experimental demonstration of Raman lasing in a compact, all-silicon, waveguide cavity on a single silicon chip. This demonstration represents an important step towards producing practical continuous-wave optical amplifiers and lasers that could be integrated with other optoelectronic components onto CMOS-compatible silicon chips.  相似文献   

7.
立方氮化硼横向电光调制半波电压的测量   总被引:1,自引:0,他引:1  
宽禁带半导体材料立方氮化硼(cBN)具有闪锌矿结构和43m点群对称性,因此cBN晶体也是电光晶体。用cBN晶体进行了横向电光调制,首次观察到cBN的电光效应,并且测得了样品的半波电压.  相似文献   

8.
综述了最近几年国际上有关硅基片上光互连技术的进展,并介绍了一些相关器件,如实现波分复用型片上光互连系统的关键器件:波导、波分复用/解复用器、激光器、探测器、调制器以及光交换器.并讨论了这些器件的工作原理以及性能特点.  相似文献   

9.
郑文军 《广西科学》2004,11(1):30-36
硅上铁电液晶显示器是以Flos空间光调制器为光引擎的微显示系统,空间光调节器的工作原理与表面稳定型铁电液晶器件相同。硅上铁电液晶微显示器运行时,图像信号被编码后经由空间光调制器加载到光波前,再通过光学系统解码读出,灰度和色彩则可通过时序编码方法来产生。  相似文献   

10.
Liss KD  Hock R  Gomm M  Waibel B  Magerl A  Krisch M  Tucoulou R 《Nature》2000,404(6776):371-373
The temporal structure and high brilliance of the X-ray beams produced by third-generation synchrotrons open up new possibilities in time-dependent diffraction and spectroscopy, where timescales down to the sub-nanosecond regime can now be accessed. These beam properties are such that one can envisage the development of the X-ray equivalent of optical components, such as photon delay lines and resonators, that have proved indispensable in a wide range of experiments--for example, pump-probe and multiple-interaction experiments--and (through shaping the temporal structure and repetition rate of the beams) time-dependent measurements in crystallography, physics, biology and chemistry. Optical resonators, such as those used in lasers, are available at wavelengths from the visible to soft X-rays. Equivalent components for hard X-rays have been discussed for more than thirty years, but have yet to be realized. Here we report the storage of hard X-ray photons (energy 15.817 keV) in a crystal resonator formed by two plates of crystalline silicon. The photons are stored for as many as 14 back-and-forth cycles within the resonator, each cycle separated by one nanosecond.  相似文献   

11.
All-optical control of light on a silicon chip   总被引:2,自引:0,他引:2  
Almeida VR  Barrios CA  Panepucci RR  Lipson M 《Nature》2004,431(7012):1081-1084
Photonic circuits, in which beams of light redirect the flow of other beams of light, are a long-standing goal for developing highly integrated optical communication components. Furthermore, it is highly desirable to use silicon--the dominant material in the microelectronic industry--as the platform for such circuits. Photonic structures that bend, split, couple and filter light have recently been demonstrated in silicon, but the flow of light in these structures is predetermined and cannot be readily modulated during operation. All-optical switches and modulators have been demonstrated with III-V compound semiconductors, but achieving the same in silicon is challenging owing to its relatively weak nonlinear optical properties. Indeed, all-optical switching in silicon has only been achieved by using extremely high powers in large or non-planar structures, where the modulated light is propagating out-of-plane. Such high powers, large dimensions and non-planar geometries are inappropriate for effective on-chip integration. Here we present the experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index. The transmission of the structure can be modulated by up to 94% in less than 500 ps using light pulses with energies as low as 25 pJ. These results confirm the recent theoretical prediction of efficient optical switching in silicon using resonant structures.  相似文献   

12.
提出了一种基于偏振调制的负系数带通微波光子滤波器结构,克服了正抽头系数低通滤波的限制,并对所提结构的可行性进行了详细的理论分析和仿真实验验证.系统利用偏振调制器特殊的相位调制特性,通过控制抽头光信号的偏振态,实现了相位调制到强度调制的转换,实现了2抽头的正、负系数带通滤波器.调节PC2和PC3,当上下2路抽头光信号的偏振态方向满足θ1=π-θ2时,实现了负系数带通滤波器;当满足θ1=θ2时,实现的是正抽头的低通滤波器.  相似文献   

13.
Progress in the fabrication of nanometre-scale electronic devices is opening new opportunities to uncover deeper aspects of the Kondo effect--a characteristic phenomenon in the physics of strongly correlated electrons. Artificial single-impurity Kondo systems have been realized in various nanostructures, including semiconductor quantum dots, carbon nanotubes and individual molecules. The Kondo effect is usually regarded as a spin-related phenomenon, namely the coherent exchange of the spin between a localized state and a Fermi sea of delocalized electrons. In principle, however, the role of the spin could be replaced by other degrees of freedom, such as an orbital quantum number. Here we show that the unique electronic structure of carbon nanotubes enables the observation of a purely orbital Kondo effect. We use a magnetic field to tune spin-polarized states into orbital degeneracy and conclude that the orbital quantum number is conserved during tunnelling. When orbital and spin degeneracies are present simultaneously, we observe a strongly enhanced Kondo effect, with a multiple splitting of the Kondo resonance at finite field and predicted to obey a so-called SU4 symmetry.  相似文献   

14.
一种利用Michelson-Morley动态干涉仪技术的多普勒调制器   总被引:3,自引:0,他引:3  
介绍了一种利用Michelison—Morley动态干涉仪技术的光调制器,其工作原理完全区别于传统的波器调制技术.利用被测样品自身运动产生的多普勒频移在干涉仪光路中造成的干涉场的交替变化,作为调制频率来实现主动的光调制,使被测目标区别于光线路径上一切静止的光学元件和背景,极大的改善了微弱信号探测的信噪比,从而实现了传统光调制技术所不能克服的光学“淹没”噪声测量.  相似文献   

15.
光电集成电场传感器的设计   总被引:4,自引:0,他引:4  
基于光电集成技术的电场传感器具有良好的抗电磁干扰能力和很快的响应速度。为了能够测量高电压电力系统中的瞬变电场,该文在基于光电集成技术的电场传感器工作原理的基础上,提出了一种适用于强电场测量的光电集成传感器设计方案。该文将电场传感器分解为调制器和偶极子天线,给出了传感器的等效电路,分别计算了调制器和偶极子天线的参数,最后对电场传感器传递函数的幅频特性及最大可测电场进行了计算。分析计算的结果表明,所设计的电场传感器最大可测电场幅值接近106V/m,同时具有较好的频响特性。  相似文献   

16.
Sriraman S  Agarwal S  Aydil ES  Maroudas D 《Nature》2002,418(6893):62-65
Hydrogenated amorphous and nanocrystalline silicon films manufactured by plasma deposition techniques are used widely in electronic and optoelectronic devices. The crystalline fraction and grain size of these films determines electronic and optical properties; the nanocrystal nucleation mechanism, which dictates the final film structure, is governed by the interactions between the hydrogen atoms of the plasma and the solid silicon matrix. Fundamental understanding of these interactions is important for optimizing the film structure and properties. Here we report the mechanism of hydrogen-induced crystallization of hydrogenated amorphous silicon films during post-deposition treatment with an H(2) (or D(2)) plasma. Using molecular-dynamics simulations and infrared spectroscopy, we show that crystallization is mediated by the insertion of H atoms into strained Si-Si bonds as the atoms diffuse through the film. This chemically driven mechanism may be operative in other covalently bonded materials, where the presence of hydrogen leads to disorder-to-order transitions.  相似文献   

17.
为了实现对空间小目标的毫米级成像,设计了基于转台模型的逆合成孔径成像激光雷达系统,实现了距离向和方位向的数据融合并完成了模拟目标的2维图像重建.系统采用窄线宽光纤激光器、大带宽电光调制器完成了对激光脉冲的线性调频,并利用外差干涉的原理提高了回波信号的信噪比.结合空间小目标的运动特性,推演了含有旋转分量的激光雷达回波信号方程.在R-D算法中代入旋转分量完成图像重建的校正,实现了对模拟空间小目标的2维图像重建.实验用毫米级铝条模拟空间小目标,用步进电机使转台匀速旋转,模拟目标旋转过程.实验结果显示:当目标固定时通过回波能量即可获得1维距离向图像,峰值位置与真实目标的特征位置一致; 当目标运动时通过数据压缩、R-D算法及旋转分量的校正可获得模拟小目标ISAIL的2维重建图像,验证了系统可实现对毫米级模拟小目标的图像重建.  相似文献   

18.
为了探讨用光学方法测量电力系统中的物理量,根据琼斯矩阵法推出了电光效应与磁光效应组合光调制的公式。结果表明检偏器的输出光强中含有电流、电压和电功率信息。当把光信号变成电信号后经信号处理可用来测量高压(或大电流)情况下的电流、电压和电功率。当主要测量电压和功率时,可选择电光调制在前、磁光调制在后的组合光调制系统;当主要测量电流或电压时,可选择磁光调制在前、电光调制在后的组合光调制系统。  相似文献   

19.
Zhang P  Crespi VH  Chang E  Louie SG  Cohen ML 《Nature》2001,409(6816):69-71
Crystalline silicon is an indirect-bandgap semiconductor, making it an inefficient emitter of light. The successful integration of silicon-based electronics with optical components will therefore require optically active (for example, direct-bandgap) materials that can be grown on silicon with high-quality interfaces. For well ordered materials, this effectively translates into the requirement that such materials lattice-match silicon: lattice mismatch generally causes cracks and poor interface properties once the mismatched overlayer exceeds a very thin critical thickness. But no direct-bandgap semiconductor has yet been produced that can lattice-match silicon, and previously suggested structures pose formidable challenges for synthesis. Much recent work has therefore focused on introducing compliant transition layers between the mismatched components. Here we propose a more direct solution to integrating silicon electronics with optical components. We have computationally designed two hypothetical direct-bandgap semiconductor alloys, the synthesis of which should be possible through the deposition of specific group-IV precursor molecules and which lattice-match silicon to 0.5-1% along lattice planes with low Miller indices. The calculated bandgaps (and hence the frequency of emitted light) lie in the window of minimal absorption in current optical fibres.  相似文献   

20.
在光纤PZT相位调制器中,由纵向强大应力而导致的第二类横向应力差是产生双折射的主要因素。分析结果表明这种双折射效应与所加电压成线性关系,并且与光纤弯曲半径的平方、波长成反比.最后提出相应的抑制措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号