首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 578 毫秒
1.
文章针对高速汽车在侧风环境下的气动稳定性问题,建立汽车空气动力学与汽车多体动力学的动态双向耦合分析模型;考虑线性二次型调节器(linear quadratic regulator, LQR)的主动前轮转向控制对高速车辆侧风稳定性的影响,并采用定方向盘转角验证主动前轮转向模型的鲁棒性;对比分析某轿车在有、无主动前轮转向控制下的运动与流场特性。研究结果表明,在侧风作用下,有、无主动前轮转向控制的车辆最大侧向位移分别为0.13 m和1.98 m,最大横摆角分别为0.41°和-2.33°,其中最大侧向位移减小了93%,最大横摆角减小了82%,因此采用主动前轮转向控制可以明显改善汽车的侧风稳定性。  相似文献   

2.
汽车气动造型在侧风稳定性中的应用研究   总被引:1,自引:0,他引:1  
对比不同气动造型汽车的侧风稳定性,分析了影响侧风稳定性的因素.采用MATLAB软件建立多自由度汽车动力学数学模型,并进行侧风稳定性仿真,通过对比风压中心与质心3种相对位置情况下的侧倾角速度和横摆角速度,得出风压中心位于质心后的汽车气动造型可以改善汽车侧风稳定性的结论.采用实车侧风稳定性试验进一步验证了侧风稳定性虚拟试验结论的有效性.最后从汽车的车身尾翼、车身横断面、阻风板等方面提出汽车侧风稳定性改善措施.  相似文献   

3.
针对高速汽车在侧风环境下的气动稳定性问题,基于大涡模拟(LES)及五自由度车辆模型,建立了汽车空气动力学与汽车动力学的动态双向耦合分析模型.考虑了主动前轮转向的主动控制(AFS)对高速车辆侧风稳定性的影响;采用调整车辆质心位置的方法验证了动态双向耦合模型的鲁棒性.对在某轿车在有、无驾驶员及有、无AFS控制下的运动及流场特性进行了对比分析.研究结果表明:在侧风作用下车辆的侧向速度及横摆角速度对高速车辆的气动稳定性有着重要影响;在无驾驶员条件下,有AFS控制的车辆仍能回到正常行驶路线,而无AFS控制的车辆无法回到正常行驶路线;在有驾驶员条件下,无AFS控制车辆最大侧向位移为1.1 m,有AFS控制车辆最大侧向位移0.47 m,表明AFS控制有助于提高车辆侧风稳定性.   相似文献   

4.
侧风对汽车高速行驶性能影响的仿真研究   总被引:3,自引:0,他引:3  
从理论上分析了汽车行驶过程中所受到的气动力,指出了气动侧向力的产生原因.按照不同的标准对侧风进行了分类,给出了某一地区的实际风速风向曲线,根据实际侧风的曲线进行拟和、简化,最终得出正弦的简化侧风模型.分别在有无阵风作用的情况下,以多体动力学为理论基础,采用虚拟样机技术,用ADAMS软件进行了汽车的直线行驶及转向行驶能力的分析,指出侧风对汽车操纵稳定性的影响将直接影响到汽车的高速行驶安全性.  相似文献   

5.
基于汽车空气动力学与系统动力学双向耦合提出了一种Fluent与Matlab的在线耦合算法.并对侧风工况下某微型面包车的气动以及稳定性进行研究.汽车在9 m/s的稳定侧风环境下行驶1 s,双向耦合方法相对于传统的单向耦合方法计算得到的汽车侧向位移、侧向力、横摆力矩分别减小3.3%,4.8%,17.8%,相应的汽车侧向速度、横摆角速度等的差距都超过了6.0%.并且这种差距会随着作用时间的增加逐渐增大.结果表明:车辆运动状态受气动力的影响不能忽视;汽车的侧向力并不一定随着横摆角变大而增大,要综合考虑汽车的侧向速度与横摆角速度的影响;双向耦合方法建立了汽车空气动力学与系统动力学之间的紧密联系,得到的结果更加切合实际.   相似文献   

6.
考虑侧向气动力的影响,建立了简化的二自由度汽车动力学模型,推导了横摆角速度增益与风压中心及汽车外形问的关系,提出了主、次气动稳定性因子的概念,阐明了影响汽车稳态响应的主要因素是主气动稳定性因子,次气动稳定性因子可以忽略不计。为分析气动力对汽车稳态响应的影响,改善汽车高速行驶稳定性提供了理论依据和简易评价方法。  相似文献   

7.
依据某跑车建立了整车多体动力学模型;根据析因设计理论,以提高汽车的侧风稳定性为主要目标,以侧风响应下的侧向滑移量和横摆角速度为具体评价指标,对悬架系统进行灵敏度分析;结合优化设计方法,对悬架结构进行改进,显著地改善了汽车的侧向风稳定性。  相似文献   

8.
以提高客车高速行驶时侧风安全性为目的,利用计算流体动力学方法建立类客车形体稳态侧风工况下的数值计算模型,研究其在不同横摆角下的空气动力学特性.计算结果表明:气动升力系数和气动侧力系数随着横摆角的增加而增加,气动阻力系数对横摆角变化不敏感,呈现先增加后减小的趋势.增加顶盖与侧围过渡圆角,增加侧围与后围过渡圆角,减小顶盖倾角都能不同程度地降低气动力系数,对改善客车高速行驶时侧风稳定性有较好的效果.模型的风洞试验数据验证了数值计算方法的准确性,计算结果为客车造型设计提供了理论依据.  相似文献   

9.
基于ADAMS/Car的汽车侧风稳定性虚拟试验研究   总被引:2,自引:0,他引:2  
为了避免实车道路试验的危险性并揭示其侧风作用下的响应特性,采用机械系统动力学仿真软件ADAMS/Car,建立了汽车侧风稳定性试验模型并进行虚拟试验.在分析风压中心及侧向风作用力模拟的基础上,通过采集大量实车数据,经三次样条插值建立了一定车速下风压中心位置、稳态和随机侧向风作用力大小随时间变化的连续曲线模型.对应施加于某轿车模型,在二维平整路面上进行了稳态和随机侧向风作用下的仿真试验,得到了侧向加速度、横摆角速度、侧倾加速度和侧向位移的响应输出,输出结果与实车试验和实际行车规律都相吻合.风压中心位置漂移连续性模拟方法从理论上保证了汽车侧风稳定性虚拟试验与实车试验的一致性.  相似文献   

10.
以主跨为1 660 m流线型箱梁悬索桥为工程依托,采用风洞试验和CFD数值模拟相结合的方法对影响大跨度悬索桥颤振稳定性的主要因素(主缆空间形式、主梁气动外形和中央稳定板高度)进行了研究,并对气动控制措施机理进行了探讨.结果表明:主缆布置形式对桥梁结构颤振临界风速的影响主要表现为主缆布置形式导致桥梁结构扭转频率的改变,从而影响桥梁结构颤振临界风速;适当增加主梁断面宽高比可有效提高桥梁结构颤振临界风速;设置合适高度的中央稳定板可有效提高带水平分离板的流线型箱梁断面颤振临界风速.中央稳定板附近产生的涡会引起主梁断面竖向气动力增加,导致主梁断面竖向运动参与程度提高,抑制了主梁断面扭转运动,从而提高了流线型箱梁断面颤振稳定性.  相似文献   

11.
以大学生方程式赛车为研究对象,采用横摆模型法对不同侧风下的赛车气动特性进行了CFD仿真和试验研究,得到了相应的气动力系数,并对不同侧风下流场中速度以及压力的分布进行了分析,探究了气动力系数和尾部流场的差异.结果表明,赛车的阻力系数和侧向力系数随横摆角的增大而增大,而升力系数并不随横摆角线性变化.赛车的下压力主要由前后翼提供,随着横摆角的增大,后翼所提供的下压力逐渐减小,而底板所提供的下压力则逐渐增大.车身所提供的阻力随横摆角的变化更为敏感.不同横摆角下,赛车尾部的涡流分布存在较大差异.   相似文献   

12.
长大编组高速列车横风气动特性研究   总被引:2,自引:0,他引:2  
采用定常RANS方法, 对长大编组高速列车的横风气动特性进行分析, 从流场特性和气动力特性两个方面开展研究。结果表明, 横风条件下, 列车表面流动现象非常丰富, 列车首尾流线型存在较多流动分离、再附等现象, 且受横风侧偏角影响较大。在列车背风侧出现两个以上的复杂分离涡系, 从列车头车下部开始, 向列车下游发展并逐渐远离列车车体。分离涡系是列车承受非定常气动力的根源。列车头车是侧向力、滚转力矩最严峻的车厢, 且随着横风侧偏角增大, 侧向力、滚转力矩逐渐增大, 列车行车环境逐渐恶化。  相似文献   

13.
为了给高速列车风洞侧风试验的模型选取提供更多的参考依据,采用计算流体力学(Computational Fluid Dynamics,CFD)方法对不同模型以200km/h速度运行时,在不同侧向风速下的气动力和流场结构进行分析.结果表明:相同侧向风速下,不同的高速列车缩比模型对头车的气动力系数影响不大,可以采用更短编组长度的高速列车模型即1.2车模型(头车+0.2节尾车)代替3车联挂模型对头车的气动特性进行风洞试验研究;考虑到尾车结构对头车末端区域的流场结构和压力分布的影响,高速列车风洞侧风试验中,不建议采用更短编组方式的模型.  相似文献   

14.
恒值阵风对多轴汽车操纵稳定性影响的建模与仿真   总被引:1,自引:1,他引:0  
李杰 《科学技术与工程》2013,13(13):3658-3662
为了更全面研究恒值阵风对多轴汽车操纵稳定性的影响,建立了汽车经过恒值阵风过程中侧向力和横摆力矩模型以及多轴汽车多轮转向二自由度模型,应用四阶龙格-库塔方法对模型进行了求解。通过改变阵风方向、阵风分布力大小、车速、阵风长度等相关参数,获得了侧向加速度、横摆角速度、质心侧偏角的响应曲线,分析了上述参数对多轴汽车操纵稳定性的影响。  相似文献   

15.
 针对汽车行驶中受侧风的影响问题,通过数值模拟研究了侧风作用下汽车的气动特性。利用三维软件UG 设定某实车模型参数,基于计算流体力学方法对实车模型进行数值模拟,研究侧风作用下车身外流场变化以及不同前车窗倾角对汽车气动特性的影响。结果表明,侧风中汽车外流场不对称,导致空气侧向力系数急剧增加达到0.927,空气阻力系数增加38.5%达到0.392,空气升力系数增加15.6%达到0.281;随着前车窗倾角的增大,车身底部气流在车尾的分离推迟,尾涡数量减少,车身表面正负压区域缩小,空气侧向力及空气升力系数变小,在前车窗倾角为35°时,汽车在侧风中的气动特性最优。  相似文献   

16.
两种基本阵风构型与组合对多轴汽车操纵稳定性的影响   总被引:1,自引:1,他引:0  
分析了汽车驶过阵风过程与五种阵风构型,建立了恒值和递增线性两种基本阵风构型对汽车作用模型,由两种基本阵风构型获得了递减线性、递增组合、递减组合三种组合阵风构型对汽车作用模型。通过仿真获得了五种阵风构型对三轴汽车的侧向力、横摆力矩、侧向加速度、横摆角速度、质心侧偏角曲线,分析了阵风对汽车操纵稳定性影响。以恒值阵风为例,模拟出不同阵风强度和车速下消除阵风影响所需的车轮转角变化曲线,有利于驾驶员有效控制阵风影响。  相似文献   

17.
车辆横向稳定性的模糊控制仿真   总被引:1,自引:0,他引:1  
车辆横向稳定性一般是由车辆的结构来保证的,但车辆在较大侧向力作用下将丧失横向稳定性.通过建立车辆转向运动的简化模型,利用前馈补偿和模糊控制策略,将前轮转向角视为前馈输入变量来补偿转向角引起的车辆侧偏角变化;通过左右车轮制动力差产生附加力矩来控制车辆的横摆运动,同时以车辆横摆角速度为反馈输入变量来校正消除系统误差,设计了车辆模糊控制器,并对控制系统在不同车速下进行了仿真分析.仿真结果表明,施加控制的车辆与无控制的相比,横摆角速度与侧偏角的输出稳态值减小,超调量降低,改善了车辆的横向稳定性.特别在高速情况下,车辆横向稳定性改善更加明显.  相似文献   

18.
高速列车的转向架区域是气动减阻研究的重点.通过样条曲线方法建立了高速列车底部结构的7参数化模型,采用计算流体力学及超拉丁立方抽样试验设计方法,研究了底部结构参数对高速列车气动阻力的影响规律.结果表明:底部结构参数对于三车总阻力、头、中、尾各节车气动阻力的影响分别为27%、37%、39%和22%,三车气动阻力对裙板高度、排障器厚度、舱前缘倒角最为敏感.但头、中、尾车影响规律不同于三车,有必要考虑对头、中、尾三车底部结构分别进行气动设计,以达到最优的减阻效果.底部结构参数主要影响列车底部平均流速改变底部结构所受气动阻力,进而影响高速列车气动阻力.  相似文献   

19.
外挂组合体对无人直升机气动特性影响分析   总被引:1,自引:0,他引:1  
为研究某型无人直升机机身两侧的外挂组合体对其气动特性的影响, 采用求解Navier-Stokes方程的方法, 对直升机机身的气动特性进行数值计算, 并与风洞试验结果进行对比, 验证CFD (computational fluid dynamics)计算方法的准确性和可靠性。计算加装外挂组合体前后的无人直升机气动特性, 包括不同侧滑角和不同挂载状态, 并进行对比分析。结果表明, 外挂组合体对无人直升机的阻力影响较大, 对升力和俯仰力矩等影响较小。加装外挂组合体后, 无人直升机气动特性受侧滑角变化的影响更大, 外挂组合体中的导弹数量变化对无人直升机的阻力影响较大。研究结果可为加装外挂组合体的气动布局和减阻设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号