首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
设R是一个环,C是R的子环,C包含环R的单位元.令CR={(c,r)|c∈C,r∈R},按方式(c1,r1)+(c2,r2)=(c1+c2,r1+r2)和(c1,r1)·(c2,r2)=(c1c2,c1r2+r1c2+r1r2)定义加法和乘法,易证CR是环,且单位元为(1R,0),故称这样的环为R的子环扩张.特别的,当子环C就取环R本身时,称R×R为R的平凡子环扩张.文章给出一些相关性质和例子,并证明了:1)若S=C×R是morphic环,则C和R也都是morphic环;2)若R是半单环,则R的平凡子环扩张是强morphic环.  相似文献   

2.
R称为左伪morphic环,若对任意的a∈R,存在b,c∈R使得Ra=l(b),Rb=l(c),其中l(b),l(c)表示R中元素b且c的左零化子.本文主要研究R[D,C]环的伪morphic性,证明了环R[D,C]是左伪morphic的当仅当(1)D是左伪morphic环;(2)对任意的x∈C,存在y∈C使得Cx=lC(y),Dx=lD(y).受文[2]的启发,定义了左[D,C]-伪morphic元,并研究了这类元素的性质.  相似文献   

3.
R称为左广义morphic环,若对每个a∈R,存在b,c∈R使得l(a)=Rb,l(b)=Rc。R称为左伪morphic环,若对任意的a∈R,存在b,c∈R使得Ra=l(b),Rb=l(c),其中l(a),l(b),l(c)表示R中元素a,b,c的左零化子。本文主要研究广义morphic环和伪morphic环的部分性质,通过例子说明某些结论的逆命题不成立。反例,设R是环,n≥0,R[x]/(xn+1)是左广义morphic环,则R是左广义morphic环,反之不成立。  相似文献   

4.
该文的目的就是要计算正规三角矩阵环T=(RO mS)上的高阶导子.设R,S为带有单位元的环且M为(R,S)双模.如果将此高阶导子记为d(r,m,s),则它就有如下形式:dn(r,m,s)=(δnR(r),τn(m),δnS(s))+n-1∑i=0[(δiR(r),τi(m),δiS(s)),mn_iE12].经过计算,就可以得到δR={δnR}n∈N与δs={δnS}n∈N分别为R和S上的高阶导子,并且映射集τ={τn}n∈N与(δR,δS)相关.  相似文献   

5.
本文证明了如下定理:定理1 环R有左单位元,N为R的幂零集元合,(?)x,y∈R,若x≡y((?)od N)就导致x,y与N中元可换或x~k=y~k,x~(k+1)=y~(k+1),其中k=k(x,y)>2,则N为R的理想;且当R/N的每一子环都幂等时,R为交换环.定理2 环R有左单位元且为2-扭自由,N为R的暴零元集合.若V~x,y∈R,x≡y(mod N)就导致x,y与N中元可换或x~k=y~k,x~(k+1)=y~(k+1),k=k(x,y)>2;或x~2=y~2,则N为R的理想,且当R/N的每一子环幂等时,R为交换环.  相似文献   

6.
构造G-morphic环   总被引:2,自引:2,他引:0  
若环R中的每个元a都满足R/Ran≌l(an),其中l(an)是an在R中左零化子,则环R叫做左G-morphic环.C是环D的子环,且R[D,C]={(d1,…,dt,c,c,…)|di∈D,c∈C,t≥1};本文主要给出了R[D,C]是左G-morphic环的一个充要条件;还给出了左[D,C]G-morphic元的定义和它的一些性质.  相似文献   

7.
讨论了带有非零导子的结合环的交换性,证明了:定理1 R是特征非2的素环,f,g为R的两个非零导子,若有自然数n使得x~nfg(y)-fg(y)x~n∈Z(R) (?)x,y∈R则R可换.定理3 R为无零因子环,d为R的非零导子,若(?)x∈R,d~n_x∈Z(R)且R的特征不是(n+1)1的因子,则R可换.定理5 若素环R的特征不为2,U为R的非零Lie理想,且(?)u∈U有udu+duu∈Z(R),则u~2∈Z(R)且当u~2∈U时,U(?)Z(R).  相似文献   

8.
设D是一个环,C是D的子环,而且1D∈C.定义R[D,C]={(d1,…,dn,c,c…)|di∈D,c∈C,n≥1},则R[D,C]是П∞D的子环.本文给出了R[D,C]的极大理想,极小理想以及Jacobson根,奇异理想和Socle的结构,随后给出了R[D,C]分别为(m,n)凝聚环,伪凝聚环,n-P内射环,极小内射环,极小CS环,内可消环,稳定度为1的环,以及其他一些环类的等价刻画.  相似文献   

9.
环R称为左广义morphic的,如果对任意的a∈R,存在b∈R使得l(a)≌R/Rb,其中l(a)表示a在R中的左零化子.右广义morphic环可以类似的定义.证明了右广义morphic环R是左拟morphic环当且仅当R是左广义morphic右P内射的.此外通过平凡扩张给出了广义morphic环一些新的例子.  相似文献   

10.
若环R的每一非零子环都含有R的一非零左理想,则称R为广义左Hamilton环,简记为GLH-环.本文给出了诣零广义左Hamilton环的元刻划,证明了定理1 诣零环R为GLH-环的充要条件是,(?)a∈R, a≠0,有n∈Z~+使na或na~2为R的非零绝对右零因子.同时给出了诣零GLH-环幂零的一条件,证明了定理2 R为2-扭自由的诣零GLH-环,令R_D={x∈R|P~(n(x))x=0}.若有正整数N,使对任何素数p及(?)~x∈R_p,有o(x)相似文献   

11.
设G是群,end(G)表示g的自同态组成的集合。在这篇注记中,我们证明了:若G是有限群,则α∈end(G)是态射当且仅当G=Gα×Ker(α);并讨论了G为无限群时的一个结论。进一步,给出了α∈end(G)为态射的一些性质。  相似文献   

12.
主要研究了Morphic环与GP-V′-环的一些关系,指出了Morphic环与GP-V′-环在某些条件下是等价的.  相似文献   

13.
该文主要研究的是群环 ZnG 的morphic问题,其中G是一个8阶非交换群,证明了ZnG是morphic当且仅当n是奇的.  相似文献   

14.
ML-环     
称环R为左ML-环,若环R中任意元a满足a或1-a是左Morphic元.显然,左Morphic环及局部环皆为左ML-环,但反之不然.设{Ri}i∈I是环族.得到的∏i∈IRi是左ML-环当且仅当存在i0∈I使得Ri0是左ML-环且对任意i∈I-{i0},Ri都是左Morphic环.此外,若正整数n≥2且n=∏si=1prii是n的标准因子分解,则Zn∝Zn是左ML-环当且仅当至多一个i使得ri>1当且仅当Zn是VNL-环.同时还构造了一些例子来说明问题.  相似文献   

15.
一类Reinhardt域的全纯自同构最大群   总被引:1,自引:0,他引:1  
本文给出了一类Reinhardt域的一个变换群并用初等的复分析方法证明了该群就是此类Reinhardt域的全纯自同构最大群.  相似文献   

16.
首先给出了morphic代数的定义:代数A称为morphic的,是指对于任意自同态α∈End(A),且Aα是A的代数理想时,有A/Aα≌ker(α).然后给出了morphic代数的一些性质,最后给出了它与自同态环的关系.  相似文献   

17.
主要刻画了在一定条件下的morphic环与其他一些环的关系,证明了如下的主要结果:1.若R是左拟duo环,且R是GP-V-环,则R是morphic环.2.若R是GP-V-环,则以下等价:(1)R是强正则环(2)R是约化的morphic环(3)R是半交换的morphic环(4)R是2-素的morphic环.  相似文献   

18.
正则性是关于环的一个很好的、应用广泛的性质,所以正则环一直成为环论研究的热点之一。本文建立了morphic-环与N-环、零可换环之间的关系,研究了morphic-环与N-环在约化条件下的等价性;给出了morphic-环在约化条件下的若干刻划;将零可换环中的一个结果移至morphic-环。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号