首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高温高压条件下甲醇-空气-稀释气层流燃烧速度测定   总被引:1,自引:0,他引:1  
利用高速纹影摄像法在定容燃烧弹内研究了不同初始压力、初始温度、气体稀释度和燃空当量比下甲醇一空气混合气预混层流燃烧速度和Markstein长度,分析了火焰拉伸对火焰传播速度的影响.基于火焰纹影照片,分析了火焰前锋面形态随混合气初始状态的变化规律.结果表明:甲醇-空气混合气层流燃烧速度随初始压力的增加而降低,随初始温度的增加而增加.氮气作为稀释气添加后,混合气的燃烧速度随稀释度增加而减小.Markstein长度值随初始压力增加而减小,随初始温度增加而减小,随气体稀释度增加而增大.随初始压力增加,火焰前锋面不稳定性增加,皱褶火焰前锋面出现的时刻提前.  相似文献   

2.
利用容弹球形火焰法测量了常温、常压下不同稀释系数、不同当量比时二甲醚-空气-N2/CO2混合气的层流燃烧特性.研究结果表明:拉伸火焰传播速度、无拉伸火焰传播速度、无拉伸层流燃烧速率均随稀释系数的增大而减小.Markstein长度值随稀释系数的增大而增大,二甲醚-空气混合气中加入稀释气后提高了火焰前锋面的稳定性.二甲醚-空气混合气进行少量稀释后即可提高火焰的稳定性,继续增大稀释系数对提高火焰稳定性的作用不明显.无拉伸层流燃烧速率最大值随着稀释系数的增加向浓混合气方向偏移.随着稀释系数的增大,二甲醚-空气-稀释气混合气的稀燃极限向浓混合气一侧移动,浓燃极限向稀混合气一侧移动,可燃范围变窄.CO2作为稀释气对火焰传播速率和可燃区域的影响大于N2作为稀释气对火焰传播速度和可燃区域的影响。  相似文献   

3.
利用容弹球形火焰法测量了常温、常压下不同稀释系数、不同当量比时二甲醚-空气-N2/CO2混合气的层流燃烧特性.研究结果表明:拉伸火焰传播速度、无拉伸火焰传播速度、无拉伸层流燃烧速率均随稀释系数的增大而减小.Markstein长度值随稀释系数的增大而增大,二甲醚-空气混合气中加入稀释气后提高了火焰前锋面的稳定性.二甲醚-空气混合气进行少量稀释后即可提高火焰的稳定性,继续增大稀释系数对提高火焰稳定性的作用不明显.无拉伸层流燃烧速率最大值随着稀释系数的增加向浓混合气方向偏移.随着稀释系数的增大,二甲醚-空气-稀释气混合气的稀燃极限向浓混合气一侧移动,浓燃极限向稀混合气一侧移动,可燃范围变窄.CO2作为稀释气对火焰传播速率和可燃区域的影响大于N2作为稀释气对火焰传播速度和可燃区域的影响.  相似文献   

4.
利用纹影法和球形火焰扩散法,在不同环境温度、压力和当量比下研究仲丁醇-空气层流燃烧特性.重点分析环境参数与当量比的耦合作用对仲丁醇层流燃烧的无拉伸火焰传播速度、无拉伸层流燃烧速度的变化值、变化率、变化率之比的影响.结果表明:在环境压力和当量比的耦合作用下,压力越大,无拉伸火焰传播速度变化越小;无拉伸火焰传播速度变化率比值随着当量比的增加而增加,直到当量比为1.10左右时,开始呈现下降趋势;当量比小于1.05时,低压环境对层流燃烧影响更大;在环境温度和当量比的耦合作用下,当量比为0.75~1.15时,无拉伸火焰传播速度变化受较高环境温度影响更大;在当量比小于0.85和大于1.45时,当量比对无拉伸层流燃烧速度影响较大.  相似文献   

5.
在定容燃烧弹中采用高速纹影摄像方法研究了不同当量比(φ=0.8~1.4)和初始温度(373K,423 K,473 K)下高辛烷值燃料-空气预混合气的层流燃烧特性,分析了当量比和初始温度对燃烧的影响.结果表明:拉伸火焰传播速率、无拉伸火焰传播速率、拉伸层流燃烧速率和无拉伸层流燃烧速率随着初始温度的增加而增加,无拉伸层流燃烧速率在φ=1.0~1.1附近有最大值;马克斯坦长度随初始温度的增加而增加,随当量比的增加而减小;燃烧压力峰值与混合气质量的比值在φ=1.1时出现最大值,初始温度增加,该比值相应增加.  相似文献   

6.
为了改善天然气燃烧速率慢、稀燃条件下着火延迟以及火焰稳定性差等不足,在常温、初始压力为3×97kPa下,研究分析了定容燃烧弹中低频交流电场对甲烷/空气预混稀燃火焰形状、火焰传播速度、燃烧压力相关特性参数等的影响。结果表明:与未加载交流电压相比,加载10~100Hz交流电压的火焰在水平方向均发生拉伸变形,电压频率越小,拉伸变形越明显,在15 Hz附近时变化最明显;加载电压后火焰传播速度增大,且随电压频率的减小先增大后减小,在接近15 Hz时最大;交流电场作用下燃烧压力峰值增大,压力峰值到达时间、初始燃烧期和主燃烧期均缩短;随着电压频率的减小,燃烧压力峰值与火焰传播速度变化相一致,而压力峰值到达时间的变化则相反,但均在15Hz附近其绝对值出现最大值,比未加载电压时分别增加了19.90%、-42.23%。  相似文献   

7.
利用向外传播的球形火焰,试验研究了初始温度为393 K和初始压力为0.1 MPa时,当量比和正丁醇的掺混量对正丁醇/正庚烷掺混燃料的层流燃烧速度和火焰不稳定性的影响.试验结果表明:混合物的层流燃烧速度随当量比的增大先增大后减小,随正丁醇掺混量的增加逐渐增大;火焰不稳定性随当量比的增大而增加,低当量比时随正丁醇掺混量的增加逐渐增加,高当量比时随掺混量的增加逐渐减小,当量比1.1时火焰不稳定性受掺混量的影响不大.  相似文献   

8.
二甲醚-氢气-空气混合气预混燃烧的实验研究   总被引:1,自引:1,他引:0  
在定容燃烧弹中,研究了不同燃空当量比、掺氢比和初始压力下的二甲醚-氢气-空气预混合气的一系列层流燃烧特性参数,并且系统地分析了当量比、掺氢比和初始压力对燃烧的影响.结果表明:随着掺氢比的增大,火焰传播速率、层流燃烧速率、燃烧压力升高率和质量燃烧速率都明显增大,火焰发展期和燃烧持续期则随之缩短;当掺氢比较低时,随着当量比的升高,马克斯坦长度不断递减,即稀混合气的燃烧稳定性更高;当掺氢比较高时,随着当量比的升高,马克斯坦长度不断递增,即浓混合气的燃烧稳定性更高;最高燃烧压力随着初始压力的升高而升高,受掺氢比的影响相对较小.  相似文献   

9.
以定容燃烧弹为试验平台,探究了初始压力和掺比对2-甲基呋喃汽油混合燃料火焰传播的影响.结合高速纹影成像,得到了各工况下的层流火焰传播照片,分析火焰发展形态,得到拉伸火焰传播速度及不稳定临界火焰半径等参数,再根据马克斯坦长度理论,求解了无拉伸火焰传播速度,并分析了火焰传播速度与火焰拉伸率的关系.研究结果表明,随着初始环境压力的升高,层流火焰传播速度减小,不稳定临界火焰半径减小,火焰不稳定性增大.随着2-甲基呋喃在混合燃料中体积分数的增加,层流火焰传播速度增大,不稳定临界火焰半径减小,火焰不稳定性增大.  相似文献   

10.
构建了氢气燃烧试验回路,获得了氢气在不同初始压力下燃烧的温度、压力以及燃尽率等试验数据.通过计算不同位置热电偶温度曲线变化率极值与时间的关系,获取了氢气火焰传播速度,研究了不同初始压力对氢气燃烧火焰传播速度、最高燃烧温度、峰值压力以及氢气燃尽率的影响.结果表明:在氢气体积分数较低时,随着初始压力的升高,火焰传播速度随之升高,燃烧过程中的最高温度随初始压力的增加而逐渐减小;在氢气体积分数较高时,随着初始压力的升高,火焰传播速度略有降低,燃烧过程中的最高温度随初始压力的增加而增加,但是初始压力对燃烧过程中的最高温度的影响并不明显,峰值压力随初始压力的升高而升高,初始压力对氢气燃尽率没有影响.  相似文献   

11.
应用Chemkin4.5中预混层流火焰速度模型,调节燃烧初始条件,针对页岩气层流燃烧的火焰结构开展了研究.探讨了页岩气层流燃烧时,初始温度、初始压力和氮气稀释度对页岩气反应物、生成物和自由基摩尔分数的影响,分析了H+OH基摩尔分数峰值和绝热火焰温度的变化规律.结果表明:当燃烧初始温度升高时,燃烧反应速度加快,H+OH基摩尔分数峰值提高,页岩气预混层流燃烧速度加快;燃烧反应速度随初始压力的增大而加快,自由基摩尔分数下降,由于反应速度的增加小于密度的增加,火焰传播速度下降;由于反应物裂解作用减弱,初始压力增大时,绝热火焰温度提高;氮气稀释度升高,空燃比提高,反应物、生成物和自由基摩尔分数下降,绝热火焰温度降低,燃烧速度下降.  相似文献   

12.
为了明确高频交流电场对火焰燃烧的影响机理,分别选取了初始压力为0.1、0.3、0.5 MPa的CH_4/空气和初始压力为0.1MPa的CH_4/O_2/Ar预混稀燃气,通过在定容燃烧弹内的网状电极上加载幅值为5kV、频率为15kHz的高频交流电场,对比分析了在高频交流电场下两种预混气火焰传播特性的异同,以及不同初始压力下CH_4/空气火焰传播特性的异同。结果表明:加载高频交流电场后,随着初始压力的增大,电场对CH_4/空气火焰面发展的影响程度逐渐减小,平均火焰传播速度增大率逐渐减小;随着过量空气系数的增大,加载电场后对CH_4/空气火焰的拉伸作用逐渐减小,对CH_4/O_2/Ar火焰的拉伸作用逐渐增大,CH_4/空气的平均火焰传播速度增大率逐渐减小,CH_4/O_2/Ar的平均火焰传播速度增大率逐渐增大,电场对两种混合气火焰传播的影响趋向相同。这说明在CH_4/空气预混稀燃气中,高频交流电场影响火焰燃烧的电化学效应中电子与燃烧产物分子的振动碰撞及其后续的链式反应占据主导。在不同初始压力下,平均火焰传播速度增大率随着简化场的增大呈线性增大,说明利用简化场来衡量高频交流电场电化学效应的强弱是可行的。  相似文献   

13.
在定容燃烧弹上,利用高速纹影摄像系统对碳酸二甲酯(DMC)的预混层流燃烧特性进行了研究,获得了不同温度、压力和当量比下的层流燃烧速度、马克斯坦长度和胞状结构的临界半径,同时对火焰不稳定性进行了理论分析。研究表明:层流燃烧速度随当量比的增加先提高后下降,在当量比为1.1时达到峰值;层流燃烧速度随初始温度的升高而提高,随初始压力的增加而降低;马克斯坦长度、临界火焰半径随当量比和压力的增加而减小,表明火焰不稳定性随初始压力和当量比的增加而增强;临界贝克来数Pe随当量比的增加而减小。利用Chemkin软件对预混层流燃烧速度进行了数值模拟,结果显示,Glaude机理对DMC层流燃烧速度的模拟值与实验测量值有较大偏差,表明该机理不能很好地预测DMC的层流燃烧速度。  相似文献   

14.
在定容燃烧弹上对低浓度煤层气火焰传播特性进行试验研究.对不同成分的低浓度煤层气、不同初始温度和不同当量比的火焰传播速度和稳定性进行分析.研究结果表明,甲烷浓度增加,火焰传播速度增加.当量比过大和过小都导致火焰传播速度降低.温度增加,拉伸火焰传播速度增加,马克斯坦常数减小,火焰稳定性降低.  相似文献   

15.
为研究直流电场及其极性对火焰传播行为的影响,利用高速摄像法和球形扩展火焰理论在定容燃烧弹上展开了正负直流电场作用下预混CH4/O2/N2火焰传播规律的试验研究.试验结果表明:对于化学计量空燃比混合气,施加电场后球形火焰面在水平方向上被拉伸,拉伸火焰传播速率、无拉伸层流燃烧速率以及马克斯坦长度均随着输入电压幅值的增大而增大,且负电场比正电场的作用更加显著.当输入电压为-5 kV与5 kV时,火焰传播速率相对于未加电场时分别增加了10.85%和5.66%,而层流燃烧速率则分别增加了13.13%和6.98%.因此,电场能有效促进火焰传播,改善燃烧以及提高燃烧稳定性.  相似文献   

16.
利用本生灯-纹影系统及CHEMKIN-PRO对高温下掺氢天然气层流预混火焰传播速度进行实验及数值模拟研究,并从热力学及化学动力学效应方面讨论了初始温度对掺氢天然气层流预混火焰传播特性的影响.结果表明:GRI-3.0机理能较准确地预测293~500K条件下的掺氢天然气层流预混火焰传播速度;在相同初始温度下,混合物层流预混火焰传播速度在高掺氢比时增幅更显著;在相同当量比下,混合物层流预混火焰传播速度及绝热火焰温度随初始温度的升高呈近线性增加;高温下,H自由基浓度的增大进一步增强了H+O2=O+OH对整体燃烧反应的促进作用,使混合物层流预混火焰传播速度显著加快.  相似文献   

17.
结合详细化学反应动力学机理,利用CHEMKIN软件计算了基础燃料均质压燃燃烧(HCCI)的过程,并与单缸HCCI燃烧试验作出对比。研究了燃料成分、压缩比、燃空当量比、初始温度、初始压力对HCCI发动机燃烧的影响。计算结果表明:随着燃料辛烷值的增加,着火延迟期增加;压缩比、当量比、初始温度、初始压力的变化对燃烧着火时刻有显著影响,同时不难看出,基础燃料HCCI燃烧运行工况范围是有限制的。  相似文献   

18.
层流火焰传播速度(LFPS)是研究分析燃烧与爆炸的关键特征参数,层流火焰速度下降率也是评价各种稀释剂对燃烧抑制效果的常用方法。基于CHEMKIN 17.0中的一维层流预混火焰速度计算模型,定量分析了稀释、潜热冷却、化学抑制对CH4-AIR层流火焰传播速度的影响规律;并考虑了化学当量比变化的影响。研究表明稀释和潜热冷都是降低CH4层流火焰传播速度的主要因素。随着稀释剂浓度的增加,稀释作用对火焰传播速度的影响增大,潜热冷却作用对火焰传播速度的影响减小,化学抑制作用的影响基本不变化,范围在8.8%~10.2%。化学当量比小于1.2时,化学抑制作用会降低火焰传播速度,降低比例在8.1%~9.7%之间;当化学当量比大于1.3时,化学抑制不起作用,甚至促使火焰传播速度的增大。  相似文献   

19.
为研究不同电压有效值的低频交流电场对预混稀燃火焰的影响,在40 Hz交流电压作用下,对常温、常压下定容燃烧弹中过量空气系数λ为1.2,1.4和1.6时的甲烷/空气火焰的传播特性和燃烧压力进行研究。研究结果表明:混合气越稀,火焰在电场中传播的时间越长,电场对火焰的作用效果越明显;40 Hz交流电压作用下,火焰均在水平方向被拉伸,且拉伸的程度与电压有效值正相关,平均火焰传播速度和燃烧压力随着电压有效值的增大而增大;与未加载电压相比,当过量空气系数λ=1.6,电压有效值U为1,2,3,4和5 k V时,平均火焰传播速度分别提高17.24%,32.76%,46.55%,55.17%和74.14%,相对燃烧压力增大率的最大值分别为0.19,0.24,0.36,0.49和0.65。  相似文献   

20.
为了明确二甲醚层流燃烧速度与混合气初始条件(温度、压力、当量比)之间的关系,基于大量的实验及数值模拟数据,利用机器学习多变量回归算法,建立了二甲醚/空气预混层流燃烧速度随初始条件的拟合关系式。通过与文献及数值模拟结果的对比,发现所建立的函数关系式能够在0.8~1.4当量比、298~373K初始温度和0.1~1.0MPa初始压力范围内得到准确的二甲醚层流燃烧速度预测结果。二甲醚层流燃烧速度随初始压力呈负指数关系,随初始温度呈正指数关系,化学当量比时,压力和温度指数的绝对值较小,混合气较浓或较稀时,压力和温度指数的绝对值增大,表明二甲醚层流燃烧速度随初始压力的增大而减小,随初始温度的升高而增大,且在较浓或者较稀的混合气条件下,层流燃烧速度随初始压力和温度的变化更为敏感。研究结果可以为二甲醚发动机数值模拟提供简单准确的层流燃烧速度输入数据,从而节约研究成本和计算时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号