首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 953 毫秒
1.
在大口径舰炮制导炮弹打击近岸机动目标的末制导段,考虑自动驾驶仪二阶动态特性与攻击角约束,基于模糊自适应逼近与动态面控制提出一种末制导律。构建二维弹目相对运动模型,运用扩张状态观测器估计目标加速度。为零化视线角的跟踪误差与视线角速率,采用自适应指数趋近律设计非奇异终端动态面滑模,设计模糊自适应系统逼近变结构项,削弱自动驾驶仪的控制指令抖振。通过Lyapunov第二法证明了闭环系统中视线角的跟踪误差与视线角速率均一致最终有界。仿真实验表明:该制导律使制导炮弹在打击具有不同加速度形式的目标时,均具备较好的末制导性能。  相似文献   

2.
针对网络化制导弹药打击近岸机动目标的末制导段,基于协同一致性理论与Lyapunov稳定性理论,提出了一种分布式模糊自适应协同导引律。考虑攻击角约束和视线角速率测量受限,构建协同导引系统的状态空间。设计扩张状态观测器(extended state observer, ESO)迅速准确地观测出在视线切向、法向与侧向上的不确定干扰。在视线切向,运用积分滑模设计分布式协同控制量,保证命中时刻在有限时间内趋于一致。在视线法向与侧向,设计了具有自适应指数趋近律的非奇异终端滑模,运用了弹目相对距离与接近速率信息,使终端视线角跟踪误差与视线角速率在有限时间内收敛至零。引入具有万能逼近性的模糊自适应系统(fuzzy adaptive system, FAS),既消除了由滑模切换项诱发的控制量高频抖振,又确保了系统一致最终有界(uniformly ultimately bounded, UUB)。仿真实验表明:与非奇异终端滑模方法相比,该导引律使组网弹药能够以更好的导引性能攻击机动目标。  相似文献   

3.
针对空地导弹的制导控制一体化设计问题,给出了基于扩张状态观测器的动态逆设计方法。建立了导弹纵向通道的制导控制一体化模型,使用动态逆方法对导弹进行了制导控制一体化设计。为克服动态逆方法的缺陷,将制导控制系统的建模误差和未知扰动皆视为不确定性,设计了扩张状态观测器并对其进行估计。仿真结果表明,该方法具有较高的制导控制精度,并满足攻击角约束。  相似文献   

4.
为提高导弹拦截高速机动目标的精度,基于自抗扰控制理论的估计补偿思想,设计了考虑自动驾驶仪动态特性和目标机动的三维动态面导引律。首先,建立了考虑自动驾驶仪动态特性的三维耦合制导模型;其次,针对制导模型中所存在的目标机动和测量噪声的干扰,设计扩张观测器估计目标机动和视线角速率,并将其应用到导引律的设计中;再次,基于动态面控制方法设计了三维空间导引律,避免了传统反演控制方法中的“微分膨胀”问题;最后,在目标作不同机动情况下,所设计的导引律与比例导引律、动态面导引律进行比较,仿真结果表明所设计的导引律具有更好的制导性能。  相似文献   

5.
基于零化视线角速率的非线性预测制导律   总被引:1,自引:0,他引:1  
利用非线性预测控制理论设计了一种零化视线角速率的预测制导律. 首先, 以弹目视线角速率为反馈项, 最小化预测误差为性能指标, 基于非线性预测控制理论和最优化理论推导出非线性预测制导律, 并对闭环回路的稳定性进行了证明. 其次, 针对制导律中含有的目标机动项信息, 设计了一种基于时间延迟控制理论的滤波算法, 并应用于预测制导律, 最后仿真考虑到导弹的延迟环节, 采用三阶自动驾驶仪模型, 验证了设计的制导律能够有效拦截机动目标, 与传统比例导引相比, 视线角速率变化平稳, 克服了末端视线角速率变化过快而导致过载饱和的情况, 降低了对执行机构的要求.  相似文献   

6.
针对制导炮弹攻击地面目标的末端导引问题, 提出一种带有攻击角和视场角约束的有限时间滑模导引律。首先, 在传统终端滑模面的基础上加入视场角约束, 并构造正切型障碍李雅普诺夫函数来解决滑模面到达段的约束问题, 以保证制导系统在状态受限的情况下有限时间收敛。其次, 利用扩张状态观测器来估计并补偿目标机动带来的扰动, 有效削弱了导引指令的抖振现象。然后, 基于稳定性理论对导引律进行分析与证明。最后, 通过仿真对比验证该导引律的有效性与鲁棒性。仿真结果表明, 该导引律不仅能满足攻击角和视场角约束, 还具有指令连续、制导时间短、命中精度高等优点。  相似文献   

7.
针对水下动能武器末制导段攻击机动目标,为获得最佳的毁伤效果,结合反演滑模控制方法与线性扩张状态观测器理论,设计了一种带角度约束的非线性制导律。通过对攻击角度的分析,设计了非线性滑模面,并根据滑模面可达条件,将制导律分为两部分设计,既满足了系统能够到达滑模面,又保持了系统状态在滑模面上运动。通过反演变结构获得的制导律,既保证了系统稳定,又具有了滑模控制理论所具有的鲁棒性。考虑到目标机动,将目标机动作为未知扰动,并对该扰动采用线性扩张状态观测器进行估计。该制导律作用下,视线角变化率收敛到零,攻击角度收敛到期望值,实现攻击角度约束。理论证实了制导系统的稳定性,仿真验证了本文所设计制导律的有效性。  相似文献   

8.
针对高速机动目标拦截,提出了一种末制导阶段预设性能制导律.首先,建立三维非线性拦截模型,在俯仰和偏航两个平面中,将期望视线角和视线角速率选做状态量设计滑模动态面,在动态面控制的基础上,将滑动模态误差利用误差转换函数转化为预设性能误差方程,设计制导律,驱动滑模变量按预设性能收敛.该制导律能使制导顺利进行,满足终端视线角约...  相似文献   

9.
非奇异快速终端二阶滑模有限时间制导律   总被引:1,自引:0,他引:1  
为实现对高速机动目标的准平行拦截,考虑导弹自动驾驶仪动态特性,设计了一种零化视线角速率的非奇异快速终端二阶滑模有限时间制导律。首先,基于终端滑模控制理论和二阶滑模控制理论,设计了非奇异快速终端二阶滑模制导律;其次,根据有限时间收敛控制理论,严格证明了系统的稳定性和有限时间收敛特性;为抑制测量噪声和估计弹目视线角速率,设计了有限时间收敛微分跟踪器,并将其与扩张观测器结合来估计不确定项。最后仿真结果表明:所设计的微分器不仅收敛速度快,估计精度高,且具有较强的抗干扰能力,同时针对目标做不同的类型机动,所设计的制导律均能实现视线角速率在有限时间收敛,为实现对高速机动目标的直接碰撞提供必要条件。  相似文献   

10.
基于平面拦截问题,考虑导弹自动驾驶仪一阶动态延迟特性,应用滑模变结构控制方法,以零化视线角速率为目的,设计了一种滑模导引律。该导引律可使得滑模面在有限时间内收敛至零,进入滑模面后可确保视线角速率在制导结束前收敛于零,从而保证高制导精度,且导引律中的变结构项只要大于目标加速度的变化率即可保证制导系统的有限时间收敛性和鲁棒性,从而大大降低了制导系统的抖动。最后以空中拦截为例,仿真验证了在导弹自动驾驶仪存在大延迟和目标做大机动逃逸下,该导引律具有良好的制导性能和高制导精度。  相似文献   

11.
针对滚仰式半捷联寻的制导导弹, 提出一种基于有限时间干扰观测器(finite time disturbance observer, FTDO)的探导控一体化滑模控制器设计方法。首先基于滚仰式半捷联导引头动力学模型和导弹制导控制模型, 建立了全状态耦合探测、制导、控制一体化控制模型。在模型中将不确定项和误差视为干扰, 通过有限时间收敛干扰观测器对干扰进行估计。对探导控一体化模型进行分块反演滑模控制律设计, 并验证了控制器的稳定性。仿真结果表明, 一体化控制方法提高了导弹对目标机动的响应能力和目标跟踪的稳定性, 并实现了比传统级联控制方法更小的脱靶量。  相似文献   

12.
雷达导引头下视探测超低空目标时,受多径效应的影响,严重降低了跟踪的精度。将弹目视线角约束在布儒斯特角附近,可有效降低多径干扰的影响。基于积分滑模控制的思想,设计出一种线性积分滑模制导律,该制导律相对于传统的滑模制导律而言,由于省去趋近滑模运动阶段,具有更快的渐进收敛特性。为了进一步提高视线角的收敛速率,设计了非线性积分滑模制导律,该制导律可保证弹目视线角在有限的时间内快速收敛至布儒斯特角。为了解决积分滑模开关项高增益系数引起的抖振问题,设计了滑模扰动观测器来估计目标的机动加速度。结合非线性积分滑模制导律,引入目标加速度的估计值,设计出一种复合制导律。结果表明,该复合制导律能有效地消除抖振现象,减小脱靶量,提高拦截的精度。  相似文献   

13.
基于导弹和目标相对运动方程,设计了视线角约束自适应滑模中制导律。应用Lyapunov稳定性理论证明了该制导律能使制导系统在有限时间内收敛至滑动模态面;当制导系统进入滑动模态面后,基于积分理论证明了中末制导交班时刻视线角能够收敛至期望值且视线角速率可以收敛至零附近。进一步将该制导律扩展到三维空间的拦截问题。最后,针对拦截正弦机动目标进行了仿真。结果表明:设计的制导律鲁棒性强,引起的交班误差小。  相似文献   

14.
针对阵地防空中大落角机动目标较难拦截的问题, 首先采用最优控制理论设计了具有攻击角约束的最优制导律, 为提高最优制导律的鲁棒性,结合变结构控制理论设计了带攻击角约束的最优滑模制导律。考虑到目标弹道倾角通常难以测量的问题, 采用扩张状态观测器对目标弹道倾角进行估计。基于李雅普诺夫稳定性理论对最优滑模制导律进行稳定性分析, 设计了能保证系统稳定的参数变化函数。仿真结果表明, 最优滑模制导律能以期望的攻击角和较小的脱靶量命中目标, 制导过程中指令变化较为平稳, 对目标的加速度机动具有较强的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号