首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 312 毫秒
1.
在舰炮制导炮弹进行远程对岸火力支援的末段, 考虑舵机齿隙、限定攻击角以及测量视线角速率受限, 提出了一种基于动态面滑模与扩张状态观测器的多约束导引控制一体化设计方法。构建了制导炮弹的导引控制一体化的严反馈串级模型, 将舵机视为更符合实际的含齿隙双惯量子系统。针对视线角速率和风等未知干扰, 设计扩张状态观测器对其实施迅速而准确的估计。设计具备自适应指数趋近律的非奇异终端滑模, 致使视线角速率与视线角跟踪误差在有限时间内零化。在高阶串级系统中合理运用动态面滑模, 有效改善微分膨胀问题。运用Lyapunov理论证明了系统一致最终有界性以及重要状态的有限时间收敛性。通过对比仿真实验, 在所提方法的调控下, 含有舵机齿隙的制导炮弹在打击固定与蛇形机动目标时, 均具有良好的制导性能。  相似文献   

2.
考虑导弹自动驾驶仪二阶动态特性的导引律   总被引:1,自引:0,他引:1  
基于平面内目标-导弹相对运动方程,考虑导弹自动驾驶仪的二阶动态特性,应用动态面控制方法设计了一种新型导引律。在设计过程中,通过引入一阶低通滤波器,使得导引律的最终表达式中不含视线角速率的高阶导数,更易于实际应用。该导引律有效地克服了导弹控制系统的动态延迟对制导精度的影响。将该导引规律与未考虑导弹自动驾驶仪动态的自适应滑模导引律相比较,对目标非机动、阶跃机动和正弦机动三种情况进行仿真。仿真结果表明,在目标机动加速度快速变化,而且导弹自动驾驶仪存在较大滞后情况下,这种导引律仍具有很高的制导精度。  相似文献   

3.
为提高导弹拦截高速机动目标的精度,基于自抗扰控制理论的估计补偿思想,设计了考虑自动驾驶仪动态特性和目标机动的三维动态面导引律。首先,建立了考虑自动驾驶仪动态特性的三维耦合制导模型;其次,针对制导模型中所存在的目标机动和测量噪声的干扰,设计扩张观测器估计目标机动和视线角速率,并将其应用到导引律的设计中;再次,基于动态面控制方法设计了三维空间导引律,避免了传统反演控制方法中的“微分膨胀”问题;最后,在目标作不同机动情况下,所设计的导引律与比例导引律、动态面导引律进行比较,仿真结果表明所设计的导引律具有更好的制导性能。  相似文献   

4.
基于平面拦截问题,考虑导弹自动驾驶仪一阶动态延迟特性,应用滑模变结构控制方法,以零化视线角速率为目的,设计了一种滑模导引律。该导引律可使得滑模面在有限时间内收敛至零,进入滑模面后可确保视线角速率在制导结束前收敛于零,从而保证高制导精度,且导引律中的变结构项只要大于目标加速度的变化率即可保证制导系统的有限时间收敛性和鲁棒性,从而大大降低了制导系统的抖动。最后以空中拦截为例,仿真验证了在导弹自动驾驶仪存在大延迟和目标做大机动逃逸下,该导引律具有良好的制导性能和高制导精度。  相似文献   

5.
针对网络化制导弹药打击近岸机动目标的末制导段,基于协同一致性理论与Lyapunov稳定性理论,提出了一种分布式模糊自适应协同导引律。考虑攻击角约束和视线角速率测量受限,构建协同导引系统的状态空间。设计扩张状态观测器(extended state observer, ESO)迅速准确地观测出在视线切向、法向与侧向上的不确定干扰。在视线切向,运用积分滑模设计分布式协同控制量,保证命中时刻在有限时间内趋于一致。在视线法向与侧向,设计了具有自适应指数趋近律的非奇异终端滑模,运用了弹目相对距离与接近速率信息,使终端视线角跟踪误差与视线角速率在有限时间内收敛至零。引入具有万能逼近性的模糊自适应系统(fuzzy adaptive system, FAS),既消除了由滑模切换项诱发的控制量高频抖振,又确保了系统一致最终有界(uniformly ultimately bounded, UUB)。仿真实验表明:与非奇异终端滑模方法相比,该导引律使组网弹药能够以更好的导引性能攻击机动目标。  相似文献   

6.
针对高速机动目标拦截, 提出了一种末制导阶段预设性能制导律。首先, 建立三维非线性拦截模型, 在俯仰和偏航两个平面中, 将期望视线角和视线角速率选做状态量设计滑模动态面, 在动态面控制的基础上, 将滑动模态误差利用误差转换函数转化为预设性能误差方程, 设计制导律, 驱动滑模变量按预设性能收敛。该制导律能使制导顺利进行, 满足终端视线角约束。然后, 考虑视线角速率测量误差以及目标信息不确定性, 建立有限时间干扰观测器, 保证了制导指令的执行。  相似文献   

7.
针对多约束条件下的中末制导交班问题,提出一种考虑自动驾驶仪动态特性的滑模中制导律。首先,建立了考虑自动驾驶仪一阶动态特性的弹目运动模型,根据该模型设计非奇异终端滑模面,并采用自适应滑模趋近律设计有限时间收敛的中制导律。其次,采用扩张状态观测器估计目标机动信息,并将估计值应用于非奇异滑模中制导律中。最后,基于有限时间理论分析了中制导律的有限时间收敛特性。数值仿真结果验证了所提中制导律的鲁棒性强,引起的交班误差小。  相似文献   

8.
基于导弹和目标相对运动方程,设计了视线角约束自适应滑模中制导律。应用Lyapunov稳定性理论证明了该制导律能使制导系统在有限时间内收敛至滑动模态面;当制导系统进入滑动模态面后,基于积分理论证明了中末制导交班时刻视线角能够收敛至期望值且视线角速率可以收敛至零附近。进一步将该制导律扩展到三维空间的拦截问题。最后,针对拦截正弦机动目标进行了仿真。结果表明:设计的制导律鲁棒性强,引起的交班误差小。  相似文献   

9.
基于零化视线角速率的非线性预测制导律   总被引:1,自引:0,他引:1  
利用非线性预测控制理论设计了一种零化视线角速率的预测制导律. 首先, 以弹目视线角速率为反馈项, 最小化预测误差为性能指标, 基于非线性预测控制理论和最优化理论推导出非线性预测制导律, 并对闭环回路的稳定性进行了证明. 其次, 针对制导律中含有的目标机动项信息, 设计了一种基于时间延迟控制理论的滤波算法, 并应用于预测制导律, 最后仿真考虑到导弹的延迟环节, 采用三阶自动驾驶仪模型, 验证了设计的制导律能够有效拦截机动目标, 与传统比例导引相比, 视线角速率变化平稳, 克服了末端视线角速率变化过快而导致过载饱和的情况, 降低了对执行机构的要求.  相似文献   

10.
非奇异快速终端二阶滑模有限时间制导律   总被引:1,自引:0,他引:1  
为实现对高速机动目标的准平行拦截,考虑导弹自动驾驶仪动态特性,设计了一种零化视线角速率的非奇异快速终端二阶滑模有限时间制导律。首先,基于终端滑模控制理论和二阶滑模控制理论,设计了非奇异快速终端二阶滑模制导律;其次,根据有限时间收敛控制理论,严格证明了系统的稳定性和有限时间收敛特性;为抑制测量噪声和估计弹目视线角速率,设计了有限时间收敛微分跟踪器,并将其与扩张观测器结合来估计不确定项。最后仿真结果表明:所设计的微分器不仅收敛速度快,估计精度高,且具有较强的抗干扰能力,同时针对目标做不同的类型机动,所设计的制导律均能实现视线角速率在有限时间收敛,为实现对高速机动目标的直接碰撞提供必要条件。  相似文献   

11.
考虑自动驾驶仪动态鲁棒自适应变结构制导律   总被引:2,自引:0,他引:2  
对于平面拦截问题,基于Lyapunov稳定性理论,应用滑模趋近律概念,将目标的机动加速度视为一类有界扰动,以视线角速率作为零输出状态变量,甚至不需要知道目标机动的界,考虑导弹自动驾驶仪的延迟,综合设计了一种具有强鲁棒性的末端导引规律。理论分析与数字仿真表明,这种制导律不但具有平直的弹道特性,而且具有很强的鲁棒性和适应性,同时方法简单、易于理解,便于工程应用。  相似文献   

12.
防空导弹在拦截超低空目标时,多径效应的存在会大大降低导弹雷达导引头探测跟踪目标的精度。为降低多径干扰的影响,可将弹目视线角(line of sight, LOS)约束在布儒斯特角附近,但是多数的研究仅仅是在弹目交汇处将其约束至布儒斯特角。基于模型预测控制可跟踪期望LOS的特点,设计出一种模型预测制导律。针对超低空目标机动扰动对制导精度的影响,设计了滑模扰动观测器对目标加速度进行估计。最后,将模型预测制导律与目标加速度的估计值相结合设计了一种复合模型预测制导律。仿真结果表明,采用复合制导律能够保证拦截弹以期望的布儒斯特弹道对超低空目标进行跟踪和拦截,同时可将LOS速率收敛至0,最大程度降低多径干扰的影响,从而提高拦截精度。  相似文献   

13.
对含攻击角度约束的机动目标拦截问题,基于非线性系统控制的浸入与不变(immersion and invariance, I&I)理论设计了一种新的自适应制导律。将目标机动综合作用作为系统干扰建立拦截问题的数学模型。制导律设计分两步完成:第一步设计I&I干扰估计器估计系统干扰,第二步设计考虑估计器跟踪误差下的I&I制导律。然后基于输入-状态稳定理论证明闭环制导系统稳定性。由于不涉及切换函数的问题,制导指令光滑连续。在该制导律作用下,视线角速率收敛速度快,导弹抗目标机动的鲁棒性强,并能够保证攻击角度要求,仿真证实了制导律的有效性。  相似文献   

14.
针对水下动能武器末制导段攻击机动目标,为获得最佳的毁伤效果,结合反演滑模控制方法与线性扩张状态观测器理论,设计了一种带角度约束的非线性制导律。通过对攻击角度的分析,设计了非线性滑模面,并根据滑模面可达条件,将制导律分为两部分设计,既满足了系统能够到达滑模面,又保持了系统状态在滑模面上运动。通过反演变结构获得的制导律,既保证了系统稳定,又具有了滑模控制理论所具有的鲁棒性。考虑到目标机动,将目标机动作为未知扰动,并对该扰动采用线性扩张状态观测器进行估计。该制导律作用下,视线角变化率收敛到零,攻击角度收敛到期望值,实现攻击角度约束。理论证实了制导系统的稳定性,仿真验证了本文所设计制导律的有效性。  相似文献   

15.
针对大气层内机动目标拦截问题,基于广义微分几何制导体制设计了一种新型的微分几何制导律。与控制视线转率有限时间内收敛不同,采用视线转率随着弹目相对距离减小而渐进收敛的滑模面。鉴于观测器估计目标加速度存在初始尖峰现象,且嵌入观测器的制导律难以证明稳定性,假设目标加速度是具有未知上界的干扰,提出一种双幂次的自适应律对其上界进行估计。通过添加修正项,消除了饱和函数替代符号函数对稳定性的影响,并证明了所设计的制导律是渐进稳定的。仿真结果表明,所设计的新型的微分几何制导律能够有效拦截机动目标,且过载分布均匀、能量消耗少。  相似文献   

16.
基于非奇异Terminal滑模的导弹末制导律研究   总被引:2,自引:0,他引:2  
结合导弹拦截的精确末制导问题,提出了一种基于非奇异Terminal滑模的鲁棒末制导设计方法。基于Terminal滑模控制中滑模面上的跟踪误差能够在有限时间内收敛到零的思想,在末制导滑模中引入非线性项,代替传统线性变结构滑动模态的设计,同时将目标的机动加速度视为已知的有界扰动,并实时对极值进行自适应估计,推导出一种非奇异Terminal滑模制导律(TSMG)。导弹在TSMG制导律的导引下,弹目视线角速度可以快速收敛,从而保证导弹有很高的命中精度。仿真结果表明非奇异Terminal滑模制导律设计的有效性。  相似文献   

17.
雷达导引头下视探测超低空目标时,受多径效应的影响,严重降低了跟踪的精度。将弹目视线角约束在布儒斯特角附近,可有效降低多径干扰的影响。基于积分滑模控制的思想,设计出一种线性积分滑模制导律,该制导律相对于传统的滑模制导律而言,由于省去趋近滑模运动阶段,具有更快的渐进收敛特性。为了进一步提高视线角的收敛速率,设计了非线性积分滑模制导律,该制导律可保证弹目视线角在有限的时间内快速收敛至布儒斯特角。为了解决积分滑模开关项高增益系数引起的抖振问题,设计了滑模扰动观测器来估计目标的机动加速度。结合非线性积分滑模制导律,引入目标加速度的估计值,设计出一种复合制导律。结果表明,该复合制导律能有效地消除抖振现象,减小脱靶量,提高拦截的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号