首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用浓度为1mol/L的碳酸氢铵(NH_4HCO_3)电解液体系,分别在0.3,0.5,1.0mA/cm~2的低电流密度下对碳纤维进行电化学氧化处理.利用扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)对改性前后碳纤维的表面形貌和化学组成进行表征,并对其单丝强度及与环氧树脂的界面剪切强度进行测试.结果表明,与高电流密度(2.0和3.0mA/cm~2)处理相比,用低电流密度(1.0mA/cm~2)对碳纤维进行化学氧化处理,可以大幅降低碳纤维的强度损失,与环氧树脂的界面剪切强度仍可达到73.56MPa.  相似文献   

2.
纤维表面上浆剂是复合材料界面性能乃至力学性能的重要影响因素.选用表面为环氧浆料的碳纤维(ERCF)和自配聚氨酯浆料的碳纤维(PUCF),分别与尼龙66(PA66)共混制备成碳纤维增强PA66复合材料(CFRPA66),并测试其相关性能.结果表明:在碳纤维体积分数相近时,由PUCF制备的CFRPA66比ERCF制备的CFRPA66拉伸强度、弯曲强度和缺口冲击强度分别提高了18.7%,20.5%和5.7%.研究结果证明了聚氨酯上浆剂对碳纤维和PA66的界面有更好的增强效果.  相似文献   

3.
在环氧树脂乳液中分别加入了3,3′-二甲基-4,4′-二氨基二环己基甲烷(DMDC)和7k型水溶性胺类固化剂,以提高碳纤维上胶剂的集束性。研究了固化剂用量、种类对上胶剂稳定性、集束性及复合材料界面粘接性能的影响。采用离心沉降法评价了上胶剂的稳定性,通过傅立叶红外光谱(FT-IR)和扫描电子显微镜(SEM)分析了上胶剂的化学结构和复合材料的破坏断口。结果显示,7k型水溶性固化剂可以提高环氧树脂乳液的稳定性,明显改善碳纤维的集束性,同时提高碳纤维与环氧648基体树脂间的界面粘接性能,使复合材料的层间剪切强度(ILSS)从77MPa提高到86.5MPa。  相似文献   

4.
为了研究界面改性和温度对织物增强混凝土(Textile Reinforced Concrete,TRC)界面性能的影响,分别采用环氧树脂、硅烷偶联剂及纳米二氧化硅(SiO2)对纤维表面进行处理,并通过电镜扫描和拔出试验测试处理后纤维微观形貌和TRC试件在25 ℃、100 ℃及200 ℃ 下的宏观力学性能 . 试验结果表明:纳米 SiO2 浸渍和环氧树脂涂层均明显改善碳纤维束在水泥基体中的界面黏结性能 . 纳米 SiO2颗粒能浸入纤维束内部,改善内部纤维丝与基体间的应力传递,同时纳米SiO2与氢氧化钙反应生成水化硅酸钙凝胶,提高其黏结性能. 硅烷偶联剂处理可以增加纤维表面粗糙程度,提高纳米 SiO2 在纤维表面的附着量,从而进一步提升纤维与基体的界面黏结强度. 在100 ℃ 和200 ℃ 下纳米 SiO2浸渍的碳纤维束界面强度显著高于环氧树脂浸渍的. 本研究将为TRC力学性能设计和热稳定性提升方法提供参考.  相似文献   

5.
采用氩气等离子体结合偶联剂技术对聚对苯撑苯并二噁唑(PBO)纤维进行表面改性,用SEM,XPS和液滴形状法对改性前后纤维表面的形态结构、组成和与水的接触角进行表征,通过单丝拔出试验检测改性前后PBO纤维与环氧树脂基体的界面剪切强度.结果表明,PBO纤维经改性后,其表面亲水性和与环氧树脂的界面剪切强度都有了很大的提高.在偶联剂含量为2%(质量分数),氩气等离子处理条件为2m in,30W和50Pa时,PBO纤维与水的接触角从原丝的大于90°下降到54.5;°相应的界面剪切强度比PBO原丝提高了78%,高达10.44MPa,而且改性后PBO纤维与环氧树脂的界面剪切强度的衰减效应不明显,与水的浸润性也基本不随时间退化.  相似文献   

6.
杜红霞 《科学技术与工程》2021,21(10):4153-4158
为详细分析建筑用聚酰胺树脂改性E-51环氧树脂胶黏剂的性能,提出建筑用聚酰胺树脂改性E-51环氧树脂胶黏剂的性能研究方法,从不同聚酰胺树脂含量、不同预聚体配比与含量两个角度,测试建筑用聚酰胺树脂改性E-51环氧树脂胶黏剂使用在建筑材料中的使用性能.测试结果显示:聚酰胺树脂含量为10 g,黏度将提升至100000 mPa·s,对改性E-51环氧树脂胶黏剂的工艺性存在负面影响;聚酰胺含量增多,改性E-51环氧树脂胶黏剂拉伸强度、压缩强度逐渐变小,剪切强度值逐渐变大;将二乙烯三胺和聚酰胺按照6.6:1.1比例混合后,改性E-51环氧树脂胶黏剂使用性能最佳;制作预聚体时,OH:NCO的最佳比例为1:3,预聚体含量为35 g时,建筑用聚酰胺树脂改性E-51环氧树脂胶黏剂剪切强度最高、胶黏剂力学性能最佳.  相似文献   

7.
PBO纤维的基本性能实验研究   总被引:11,自引:0,他引:11  
对PBO纤维的拉伸性能、耐热性等物理性能进行了实验测试,并与F-12 和Kevlar-49芳纶纤维进行了对比,对由PBO纤维与环氧树脂基体复合成型的单向纤维增强环形试样,测试了其拉伸强度、弹性模量和层间剪切强度,结果表明:PBO纤维股纱的拉伸强度比F-12和Kevlar-49分别高24.4%和52.8%以上,单向纤维复合材料的拉伸强度分别高约37.2%和92.8%,而热性也高约166℃,但PBO纤维与环氧树脂基体的界面粘结性很差,层间剪切强度仅为23-27MPa。  相似文献   

8.
温度作用对碳纤维混凝土界面黏结性能的影响   总被引:5,自引:0,他引:5  
为研究温度作用对碳纤维(CFRP)—混凝土黏结界面剪切性能的影响,首先进行了温度作用下不同固化条件的胶黏剂黏结性能试验,研究了温度作用及固化方式对胶黏剂拉伸剪切性能的影响.试验发现,玻璃化温度是影响胶黏剂高温性能的一个重要指标,温度作用下胶黏剂材料的黏结性能退化大部分发生在其玻璃化转变区域.其次,结合常温下已有的CFRP—混凝土界面黏结应力—滑移关系提出了温度作用下界面黏结应力—滑移关系的计算方法.最后,汇总和分析了目前已有的CFRP—混凝土界面试验研究结果,引入胶黏剂玻璃化温度这一参数,给出了温度作用下CFRP—混凝土界面剪切黏结强度、极限承载力和初始剪切刚度计算模型.  相似文献   

9.
该发明公开了一种高耐磨性碳纤维用乳液上浆剂,其特征在于,包括主剂与去离子水,主剂与去离子水质量比为(30∶70)~(50∶50),所述的主剂由以下组成:芳香族聚酯多元醇55~75 wt%,双酚F环氧树脂10~30 wt%,非离子表面活性剂11~15 wt%,抗氧化剂0.5~1.5 wt%,流平剂0.5~1.5 wt%。采用该发明的碳纤维用乳液上浆剂上浆后的碳纤维耐磨性高,可降低织造过程中产生的起毛和断丝,极大地提高了生产效率,降低生产和维护成本。该发明还公开了上述碳纤维用乳液上浆剂的制备方法和使用方法。  相似文献   

10.
采用压延成张工艺制备碳纤维和玻璃纤维混杂增强非石棉橡胶基密封复合材料(NAFC),以横向抗拉强度作为表征混杂增强橡胶基密封材料中纤维与橡胶界面粘结性能的指标.通过扫描电镜(SEM)对材料横向拉伸试样断口进行形貌分析,及对材料的耐油、耐酸、耐碱性能进行测试,探讨了不同表面处理工艺对纤维与基体界面粘结效果的影响.研究结果表明,对玻璃纤维采用偶联剂KH550浸渍后涂覆环氧树脂涂层,对碳纤维在空气氧化后涂覆环氧树脂涂层,可有效增强纤维、基体的界面粘结,所制得的混杂纤维增强复合材料具有较好的机械性能和耐介质性能.  相似文献   

11.
对碳钢表面分别进行硅烷和磷化处理,然后用环氧树脂胶粘剂粘接. 研究了不同表面处理的胶接接头力学性能,分析了金属表面处理方法对胶粘剂/金属界面疲劳性能的影响. 在胶接接头施加疲劳载荷,测量了胶接接头疲劳前后的强度-位移曲线. 对比疲劳前后界面剪切强度的变化,采用断裂力学理论分析了界面裂纹扩展过程. 结果表明:表面经硅烷处理后,界面粘接强度最大,耐疲劳性能最好. 胶接接头的失效通常在界面发生,能量可以通过裂尖扩展释放,也可以通过粘接层的塑性变形释放.  相似文献   

12.
为了提高基于NiTi纤维与树脂复合材料的拉伸、冲击、弯曲性能,采用硝酸、硅烷偶联剂、异氰酸酯涂层以及低温等离子体与硅烷偶联剂联合处理等方法对NiTi纤维表面进行处理,增强纤维与树脂间的界面黏结. 研究表明: NiTi纤维经不同方法处理后,其环氧树脂复合材料的层间剪切强度提高了10.90%~44.74%. 低温等离子体处理的NiTi纤维再经硅烷处理,其环氧树脂复合材料的拉伸性能、冲击性能、弯曲性能分别提高了88.81%, 98.43%和45.55%,且纤维与树脂黏合较好.  相似文献   

13.
研究了不同处理的碳纤维单丝在环氧树脂基体中拉伸时的现象及界面剪切强度.拉伸时发现,氧等离子处理纤维的界面附近会出现明显的光弹现象,未处理纤维没有明显的光弹现象,而接枝纤维只在界面上有较弱的光弹线.由拉伸后纤维的平均断裂长度得知,氧等离子处理碳纤维界面结合强度已超过了基体树脂的自身强度,因而产生许多垂直于纤维轴向的裂缝.接枝纤维的界面结合强度,在拉伸时虽然也超过了基体树脂的自身强度,但并不产生垂直于轴向的裂缝,表现出优化界面的特征.  相似文献   

14.
以未表面处理的PAN基高模碳纤维(HMCF)为工作电极,分别用NH4H2PO4、NH4HCO3和KOH为电解质,进行循环伏安多重扫描,以研究HMCF在不同电解质中的电化学反应行为以及电解质的氧化能力。同时采用连续恒流阳极氧化的方法对HMCF进行表面处理,验证循环伏安法得到的结论。通过联碱滴定、SEM等方法表征处理前后纤维表面官能团、表面形貌的变化;处理前后纤维与环氧树脂界面粘接性能的变化通过层间剪切强度(ILSS)表征。循环伏安结果显示:在NH4H2PO4溶液中扫描时氧化反应峰值电流最高,表明纤维表面生成的官能团最多;在KOH溶液中扫描时平台电流最高,表明纤维表面粗糙度提高幅度最大。联碱滴定结果表明NH4H2PO4溶液处理后纤维表面官能团含量提高最多;SEM结果显示KOH溶液处理后纤维表面粗糙度增加最明显;这两点验证了循环伏安多重扫描的结果。用NH4H2PO4、KOH处理后的纤维与环氧树脂ILSS达到75MPa、60MPa,分别提高240%和170%。  相似文献   

15.
采用质量分数为5%NH4HCO3溶液对聚丙烯腈(PAN)基碳纤维进行不同程度的电化学处理。采用X射线光电子能谱(XPS)和拉曼光谱(Raman)表征电化学处理前后碳纤维表面化学成分和表面微观结构的变化规律。将碳纤维样品与环氧树脂制成复合材料,探究该复合材料的层间剪切强度(ILSS)。研究结果表明:经过3组电化学处理后,碳纤维表面含氧官能团增多、表面有序度下降、复合材料的ILSS提高1.94倍;继续经过3组电化学处理,碳纤维表面含氧官能团下降、表面有序度回升、复合材料的ILSS提高1.53倍;纤维表面含氧官能团含量越多,纤维的结构破坏程度越低,碳纤维/环氧树脂复合材料的ILSS越高。在大规模电化学处理碳纤维过程中,选择3组电化学处理碳纤维,既能大幅度改善碳纤维表面活性,又不会严重影响碳纤维的表面结构。  相似文献   

16.
镍对C/Cu复合材料界面特性影响的研究   总被引:5,自引:0,他引:5  
利用透射电镜及x射线衍射仪研究了C/Cu复合材料的界面特性及合金元素镍对C/Cu复合材料界面特性的影响。研究表明,C/Cu复合材料的界面既无化学反应也没有扩散发生,C-Cu界面是物理结合。合金元素Ni与碳纤维发生互扩散使碳纤维发生一定的石墨化,但使C-Cu界面结合强度明显提高,因此使C/Cu复合材料的强度从650MPa提高到760MPa,横向剪切强度从30MPa提高到70MPa。扩散型界面结合是理想的界面结合状态。  相似文献   

17.
研究了不同处理的碳纤维单丝在环氧树脂基栖中拉伸时的现象及界面剪切强度。拉伸时发现,氧等离子处理纤维的界面附近会出现明显的光弹现象,未处理纤维没有明显的单弹现象,而接枝纤维只在界面上有较弱的光弹线。由拉伸一纤维的平均断裂长度得知,氧等离子处理碳纤维界面结合强度已超过了基体树脂的自身强度,因而产生许多垂直于纤维轴向的裂缝。接枝纤维的界面结合强度,在拉伸时虽然也超过了基体树脂的自身强度,但并不产生垂直于  相似文献   

18.
采用磷酸铝铬为胶黏剂,NiFe2O4陶瓷粉与Cu-Ag合金粉为填充料,CuO为固化剂,对NiFe2O4/Cu金属陶瓷与45#钢的黏接特性进行研究.通过测试黏接接头强度、分析黏接界面和黏接层的显微结构和物相组成等研究胶黏剂浓度和处理工艺对黏接接头室温和高温黏接性能的影响.实验结果表明,于120 ℃固化和1 000 ℃热处理后的黏接界面结合紧密,于120 ℃固化后的室温拉剪强度达53.88 MPa,于1 000 ℃热处理后的室温拉剪强度为25.43 MPa;700 ℃时试样拉剪强度达29.25 MPa,800 ℃时接头的拉剪强度降为6.54 MPa;胶黏剂的软化及熔化是导致800 ℃时接头高温黏接强度降低的一个主要原因,同时,高温下磷酸盐分解物的挥发及其物相反应导致黏接层疏松、多孔.  相似文献   

19.
利用不同官能度、不同分子量的端氨基聚醚与环氧树脂E44复配出可用于非开挖管道修复的复合树脂,分别测试了不同配方组成的弯曲强度和剪切强度,得到了性能较优的配方组成,并利用差示扫描量热仪(DSC)对其固化反应过程进行了监测。监测结果表明:该复合树脂弯曲强度可达35.4 MPa,剪切强度可达8.1 MPa;固化反应放热为152 J/g,固化反应的固化温度为54.01℃。  相似文献   

20.
为了改善碳纤维增强复合材料(CFRP)表面浸润性及提高胶接强度,采用常温常压空气等离子方法对CFRP胶接表面进行预处理,测试了不同预处理参数下CFRP与水的接触角,计算了其表面能;利用原子力显微镜、傅里叶红外光谱仪和X射线光电子能谱仪分析不同处理参数下CFRP表面的物理和化学性能;采用4种胶粘剂测试CFRP的胶接拉剪强度.结果表明:喷头与CFRP表面的距离为6 mm、喷头移动速度50 mm/s为最佳的等离子处理条件;经等离子处理后,CFRP与水的接触角由处理前的114°降低至23°,表面能由32.49 mJ/m~2升高到72.19 mJ/m~2;等离子处理增强了CFRP表面环氧官能团,降低了表面粗糙度,表面形成了大量微米级沟壑;采用等离子处理能够显著提高环氧树脂胶粘剂接头的拉剪强度,使其失效形式由界面失效转变为基材失效,而聚氨酯胶粘剂接头的拉剪强度变化不大,其失效形式由界面胶层与内聚复合失效转变为纯界面失效.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号