首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
以一座已建的大跨悬索桥为工程依托,基于现场实测与计算流体动力学(Computational Fluid Dynamics, CFD)方法研究Π形加劲梁断面气动外形对桥面高度处实测风参数的影响,并提出实测风攻角的修正方法. 进行为期5个月的桥面高度处风速和风攻角现场实测,分析风参数沿桥轴线的分布规律,并比较了桥面高度处迎风侧与背风侧风速仪实测的风速和风攻角;采用计算流体动力学方法模拟气流流经静止加劲梁断面的流场,研究来流风攻角和风速对风速仪安装在加劲梁不同位置处风参数的影响;结合数值模拟结果,通过函数拟合得到Π形加劲梁断面风速仪实测风攻角的修正公式. 结果表明:实测风速在大桥主跨范围内较为接近,且边跨风速相较于主跨风速偏小;现场实测得到的迎风侧风攻角明显大于背风侧,两侧风速基本一致;迎风侧与背风侧的风参数数值模拟结果与现场实测具有一致性,主梁绕流对距主梁20 m范围内的风攻角监测结果均存在一定影响. 通过本文建立的风攻角修正方法,可以根据迎风侧风攻角的实测值得到较为合理的风攻角修正结果.  相似文献   

2.
在项部开口腔室内开展庚烷油池火的燃烧实验,研究了开口尺寸对火灾发展过程的影响.实验使用了2种直径的油池和6种大小的水平开口,并测量了燃料质量损失速率、腔室内的气体温度分布以及火源根部附近的气体浓度变化过程.结果表明,根据火焰熄灭的原因,燃烧可分为缺氧熄灭模式和燃料耗尽熄灭模式.在缺氧熄灭模式下,顶部开口尺寸对燃料消耗率、质量损失速率和气体温度分布的影响较小;火灾进入燃料耗尽熄灭模式后,质量损失速率以及气体温度均随开口尺寸增大而增大.同时,随着开口的增大,火焰熄灭时的氧气浓度变大.在项部开口腔室火灾中,燃烧开始后,烟气在腔室内迅速沉降并充满整个腔室,“双区模型”不再适用.  相似文献   

3.
为探明隧道火灾临界风速时的火区通风阻力,并明确射流风机局部风流场对隧道烟气蔓延的影响规律,采用计算流体动力学软件ANSYS Fluent,建立了考虑20 MW火灾长度800 m的1∶1隧道数值模型。通过开展5 MW隧道火灾数值计算和1∶10物理模型试验,以临界风速和温度为指标,验证所建数值模型的合理性和适用性。确定隧道火灾临界风速及火区通风阻力,并在临界风速条件下,进行火源与射流风机不同相对位置时隧道火灾场景的数值计算。研究结果表明:300 m隧道内5 MW火灾,临界风速约为2.0 m/s,火区通风阻力约为3.0 Pa; 800 m隧道内20 MW火灾,临界风速约为2.8 m/s,火区通风阻力约为7.0 Pa。在20 MW火灾临界风速条件下,当火源位于风机下游40 m范围内,烟气分层完全被破坏,火源下游区域不利于人员疏散,当火源位于风机下游80及120 m处,烟气状态分别为分层较好和分层良好,相应的火灾危险区域分别为火源下游300 m范围内和火源下游100 m范围内;当火源位于风机的上游,烟气蔓延至风机位置前分层良好,蔓延至风机位置后,随高速射流迅速向下部扩散并充满隧道断面,风机下游区...  相似文献   

4.
基于横风作用下高速列车流场的非定常特性,建立了横风-列车-桥隧模型进行仿真计算,并通过1∶8列车动模型试验验证数值方法的准确性。随后研究横风条件下列车突出隧道时,隧道内外瞬态气动压力、气动荷载变化及流场特性,揭示了横风-列车-隧道之间的相互作用机理。研究结果表明:随着横风风速的增大,压力逐渐减小,但压力随时间的变化规律相似;横风对隧道出口处及隧道外监测点处的压力梯度有明显的影响,对于隧道内的监测点几乎没有影响;随着横风风速增大,隧道外背风侧正压峰值随风速增大略有减小,迎风侧正压峰值基本保持不变,背风侧负压峰值减小速率大于迎风侧;横风对列车突出隧道运行过程的压力波动影响有限,在横风风速为20 m/s时,隧道外界流场影响隧道内气动压力的范围不超过20 m。同种横风条件下,迎风侧、背风侧监测点处压力时程变化规律不相同,压力梯度峰值出现的位置也不同,且位于列车同侧越靠近地面的监测点处压力峰值及压力梯度峰值绝对值越大;横风下,气流经过车-桥系统时,在桥底部、列车背风侧顶部及底部发生明显的流动分离现象,导致隧道外车体两侧的压差大于隧道内车体两侧压差。  相似文献   

5.
基于春季和秋季防火期的野外调查数据,利用BehavePlus林火行为预测系统,分别对长白山风倒区春季和秋季防火季的火行为进行了模拟,研究了长白山风倒区火行为特征.结果表明:风倒区4个重要火行为指标(火蔓延速率、火线强度、火焰长度和火蔓延距离)的模拟结果春季都明显高于秋季;火行为与坡度关系较小,与风速关系较大;春季火灾非常容易达到重度火势,难以进行扑救,春季防火期火灾预防尤为重要.结合保护区的实际情况,从扑救人员和扑救物资的合理布局,改善现有扑救装置和促进风倒区林地演替等方面提出了火灾预防和扑救的建议.  相似文献   

6.
为深入了解火灾过程的特点,采用大涡模拟方法对火羽流与自然对流引起的典型竖井中的流动进行了数值模拟研究。网格滤波截断的亚格子湍能远小于流场总能量,验证了大涡模拟方法的有效性。竖井内火羽流和自然对流的计算结果与文献给出的实验值总体上符合较好。在此基础上讨论了3种不同开口形式竖井内火灾及加热情况下的内部流场,发现两者在表观上具有一定相似性,但火灾状态下流场湍流更强,卷起的涡团更多,流场温度更高。此外,开口形式亦对竖井内流型产生很大影响。  相似文献   

7.
为研究风向角对驶出隧道过程中高速列车气动效应的影响,以某型高速动车组列车为研究对象,采用数值模拟方法对隧道内气动压力、列车风风速、流场分布及列车气动荷载进行分析。通过与动模型试验结果进出对比,验证数值模拟方法的准确性。研究结果表明:隧道壁面气动压力峰值及变化幅值最大值出现在隧道内部,且出现位置到隧道出口距离与风向角有关;背风侧气动压力受风向角影响更大,气动压力变化幅值随风向角增大呈现先减小后增大再减小的趋势;出口处列车风风速随风向角增大基本呈现先增大后减小的趋势,30°风向角时列车风风速最大,但迎、背风侧列车风风速峰值出现时刻不同;随着风向角增大,流场分布不对称性增强,列车绕流特性由流线型绕流逐渐过渡到钝体绕流,流动分离点到头车鼻尖的距离呈现先增大后减小最后再增大的变化规律,隧道内流动结构愈加复杂;气动横向力、升力变化幅值随风向角增加呈现先增后减趋势,头车横向力系数最大变化幅值分别是中车、尾车的2.4倍和2.6倍,升力系数最大变化幅值分别是中车、尾车的1.1倍和1.5倍,故保证头车安全是控制整车运行安全的关键;侧风下高速列车驶出隧道情形下的最不利风向角为30°,此时头车发生列车事故风险...  相似文献   

8.
为研究下击暴流对低矮双坡建筑的影响,基于计算流体动力学方法模拟了下击暴流作用下低矮双坡建筑表面风压,分析了两种典型屋面坡角和湍流模型对下击暴流作用下低矮双坡建筑物的表面风压特性的影响.结果表明:下击暴流作用下,小坡角(16°)时迎风面上边缘的负压梯度较大,两侧屋面受到负压作用,大坡角(35°)时屋脊处的负压较大且更加集中,迎风面侧和背风侧屋面分别呈现正压分布和负压分布;在采用标准壁面函数处理近壁面粘性区域时,不同湍流模型的低矮双坡建筑风压分布的差别主要体现在迎风面、屋脊处以及两侧屋盖面上下边缘,剪切应力运输湍流模型更适合于模拟下击暴流作用下大坡角低矮双坡建筑物屋脊处风压以及处理小坡角低矮双坡建筑物沿来流方向屋面上下两边缘棱角处的强分离流动问题.  相似文献   

9.
基于两相流理论模拟立方体周围的积雪飘移.采用各向异性的雷诺应力模型(RSM),通过改进动量方程和湍流方程的源项来考虑雪的浮力和惯性力对风(空气相)的影响.以立方体模型为研究对象,首先将改进模型计算的表面风压分布与实测结果进行了对比,接着把改进模型的雪飘移计算结果与未改进模型的计算结果、实测结果进行了对比.结果显示,改进后模型的模拟结果与实测结果更加吻合,立方体模型周边雪颗粒的沉积侵蚀趋势表现一致.在立方体迎风侧的前方区域及两侧气流分离区出现了明显的侵蚀,紧靠背风侧后方区域出现了沉积.  相似文献   

10.
根据二维定常不可压缩Navier-Stokes方程和k-ε双方程紊流模型,采用有限体积法对客车、敞车、棚车和罐车4种不同外形铁路车辆在路堤高度、横风风速相同条件下的横向气动性能进行分析与比较。研究结果表明:对于车顶外形为圆弧形的车型,空气流过圆弧形车顶时流速增加,压力下降,故其升力较大;对于车顶外形为钝形的车型,车体迎风面正压区域较大,而背风侧产生较大的漩涡区,在此区域内压力较小,故其侧向力较大;在横风作用下,客车、敞车、棚车和罐车4种车型中,罐车的侧滚力矩最小,稳定性最强,敞车和客车次之,棚车的侧滚力矩最大,其稳定性最弱;在进行强横风地段挡风墙优化设计时,可将棚车作为设防车型,以保证所有列车在强横风地段运行安全。  相似文献   

11.
联合收获机惯性分离室内气固两相流数值模拟   总被引:3,自引:0,他引:3  
利用Fluent软件中K-ε湍流模型和离散相模型对4ZTL-1800气吸式联合收获机惯性分离室气固两相流特征进行数值模拟计算分析.从流体动力学和湍流理论出发建立了气相湍流模型,根据牛顿第二定律建立了固相数学模型.通过建立的模型和边界条件模拟气体流动,利用双向耦合拉格朗日法追踪颗粒运动轨迹.通过数值计算,得到气流场压力分布规律以及颗粒相运动轨迹及其沉降和分离过程.研究结果为进一步改善惯性分离室内流场的分布规律,提高籽粒的沉降效率,减少气流的携带损失提供了依据.  相似文献   

12.
近年来中国兴建了很多浮顶油品储罐。当浮顶储罐内部液位较低时,罐体内部易积聚蒸气,火灾风险增大。一旦发生火灾易形成侧壁约束下的油池火,给油品储运安全造成严重威胁。该文采用石英玻璃材质的油盘,开展了不同侧壁高度(油盘侧壁上边缘到油品表面的垂直距离,h=3~50 cm)的正庚烷油池火实验,研究了侧壁高度对灾变过程和关键火灾参数(燃烧速率、火焰高度)的影响。实验结果表明:侧壁高度对整个燃烧过程影响明显,尤其是对初始阶段和稳定阶段。对于初始阶段,低侧壁油池火燃烧速率快速增加,但高侧壁油池火燃烧速率呈现先快速增加随后逐渐减小的趋势,这主要是由于火焰根部不断抬升进而远离油品表面造成的。对于稳定阶段,随侧壁高度的增加,燃烧速率呈现先减小后增大随后再减小的趋势。其中的先减小后增大趋势是由于火焰根部逐渐从油盘外进入油盘内造成的,而随后的再减小趋势主要是由于火焰根部不断抬升造成的。基于高侧壁稳定阶段的火焰形态,可将火焰划分为外部火焰和内部火焰。随侧壁高度的增加,外部火焰高度逐渐降低,内部火焰高度逐渐增加。基于量纲归一化分析,考虑侧壁高度和空气卷吸因素,引入油盘特征直径,建立了不同侧壁高度下的无量纲内部火焰高...  相似文献   

13.
钢筋混凝土(Reinforced Concrete, RC)结构在遭受火灾高温后力学性能发生损伤退化.为了探究碳纤维增强复合材料(Carbon Fiber Reinforced Polymer, CFRP)加固高温损伤RC板的力学性能,基于“热学-力学”顺序单向耦合框架,开展了三维数值模拟.在模拟中,首先进行高温条件下RC板传热分析,获得其温度场变化;进而考虑钢筋和混凝土材料力学性能以及二者之间非线性粘结-滑移行为随温度的退化规律,假定外贴CRFP片材与混凝土之间的相互作用为完好粘结,建立CFRP加固高温损伤RC板三维有限元分析模型.在验证了三维数值模型合理性的基础上,分析了不同高温时间损伤RC板外贴CFRP加固后的破坏形态、承载力、挠度、刚度和内部应变等,评估了加固效果,进一步讨论了CFRP条带粘贴数量对加固效果的影响.结果表明:RC板受火后在四点加载下的破坏模式为典型弯曲破坏.随着受火时间增加,损伤更加严重,承载力和刚度等逐渐降低,钢筋和CFRP的应变增大.随着RC板高温损伤后粘贴CFRP层数增加,承载力和刚度增大,钢筋和CFRP的应变降低.此外,当板受火时间达到耐火极限90min...  相似文献   

14.
对负压差立管内气固两相流的气相流动特性进行了分析,并基于滑落速度与空隙率的线性关系,建立了立管内气相速度的计算模型,给出了气体流量与相关参数的关联式。分析结果表明,负压差立管内气固两相流中气体来源于出口端进入的流化床流化风和入口端下行颗粒夹带的气体。气流大小和方向的变化主要受颗粒质量流率和立管负压差的影响,存在一个气流方向改变的临界颗粒质量流率GSC。当颗粒质量流率GS〈GSC时,流态是稀密两相流态,气体上行,成分是上行的流化风;GS〉GSC时,流态是浓相输送流态,气体下行,成分是下行颗粒夹带的气体,这个气体量随颗粒质量流率的增加而增大。模型计算结果与实验数据一致。  相似文献   

15.
作为风敏感结构,双柱悬索拉线塔在强风荷载作用下易遭受不同程度的损伤甚至发生倒塌破坏,因此,有必要对其进行风灾易损性分析。为此,本文提出一种双柱悬索拉线塔风致倒塌易损性分析方法。首先,考虑结构参数的不确定性,基于拉丁超立方抽样建立双柱悬索拉线塔不确定性模型,完成所有样本模型的非线性静力推覆分析;然后,利用B-R准则和对数正态分布函数拟合得到双柱悬索拉线塔倒塌易损性曲线;最后,研究风向角和拉线初张力对结构倒塌易损性曲线的影响。研究结果表明:相较于确定性倒塌分析,不确定性倒塌分析能够更好地评估双柱悬索拉线塔的抗风承载能力;风向角对双柱悬索拉线塔的倒塌易损性影响较大,结构的最不利风向角为45°,当基本风速小于56.5 m/s时,结构在任一风向角下的倒塌概率都很小;拉线初张力对结构倒塌临界风速无影响,但对立柱顶点位移易损性曲线影响较大;增大拉线初张力,左右侧立柱的顶点位移易损性曲线均向左移动,且其对背风侧立柱的影响更大。  相似文献   

16.
采用计算流体力学(CFD)方法建立多个数值模型,通过与风洞试验的对比分析验证了数值模拟结果的可靠性,较系统地研究并详细分析了峡谷长度、山顶间距、山脉坡度3种地貌因素对平均风加速效应的影响.结果表明:山脉顶部加速效应主要受山脉坡度的影响,在近地面内坡度越大加速效应越明显;峡谷内部加速效应受多种地貌因素影响且变化趋势较为复杂,必须考虑峡谷侧坡边界层的影响和流动的三维效应,当峡谷长度越短、山顶间距越小、山脉坡度越大时,迎风谷口处在近地面内的加速效应越明显.最后计算出典型峡谷的风压地形修正系数,并与我国建筑结构荷载规范进行对比.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号