首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设B(H)是复Hilbert空间H上的有界线性算子全体且dim H2,证明了B(H)上的可加满射φ保持算子乘积非零广义投影的充要条件是存在酉算子或共轭酉算子U及常数a且a6=1使得对于任意的A∈B(H)都有φ(A)=aUAU*,或存在共轭酉算子U及常数a且a6=1使得对于任意的A∈B(H)都有φ(A)=aUA*U*。  相似文献   

2.
设B(H)是维数大于1的复Hilbert空间H上有界线性算子全体得到的代数.?A,B∈B(H),定义拟积A°B=A+B-AB.证明?是B(H)上的双射且满足?(A*°B)=?(A)*°?(B),?A,B∈B(H)的充要条件是当dim H≥3时,存在H上的酉算子或共轭酉算子U使得?(A)=UAU*,A∈B(H);当dim H=2时,存在H上的酉算子U使得?(A)=UA_τU*,A∈B(H),其中τ是C上的环自同构.设A=(a_(ij))∈M_2,则令A_τ=τ(a_(ij)).  相似文献   

3.
设U=Tri(A,M,B )是含单位元1的三角代数,1A、1B分别是A和B的单位元。对任意的A∈A, B∈B分别存在整数k1、k2,使得k11A-A, k21B-B在三角代数中可逆。利用代数分解的方法,证明了如果{φn}n∈N:U→U是一列线性映射满足对任意的U,V∈U且UV=VU=1,有φn([U,V]ξ)=∑i+j=nφi(U)φj(V)-ξφi(V)φj(U)(ξ≠0,1),则{φn}n∈N是U上的高阶导子,其中φ0=id0是恒等映射,[U,V]ξ=UV-ξVU。  相似文献   

4.
设H是复数域C上的Hilbert空间且dimH≥2,Bs(H)是H上所有自伴算子全体。设Φ是Bs(H)上的双射,如果Φ满足对任意A,B∈Bs(H),都有‖Φ(A)Φ(B)+Φ(B)Φ(A)‖=‖AB+BA‖,则存在一个酉算子或反酉算子U和泛函h:B(H)→{1,-1}使得对任意X∈B(H),有Φ(X)=h(X)UXU*。  相似文献   

5.
设M是作用在维数大于2的复可分Hilbert空间,M上的因子von Neumann代数。若φ:M→M是线性Lie-*导子,则存在数λ∈R和算子T∈M且T+T^*=λI,以及线性映射h:M→CI,且对所有的A,B∈M有h(AB^*-B^*A)=0,使得对任意A∈M,有η(A)=AT—TA+h(A)。  相似文献   

6.
设H是复Hilbert空间,B(H)是H上有界线性算子全体构成的Banach代数.本文讨论了B(H)上初等算子UA,B的范数,其中UA,B(X)=AXB+BXA(X∈B(H)),给出了‖UA,B‖=2‖A‖‖B‖成立的一些充分必要条件,并且给出例子说明了‖A^*B‖=‖A‖‖B‖是‖UA,B‖=2‖A‖‖B‖成立的必要而非充分条件,这样就否定回答了A.Seddik提出的问题.  相似文献   

7.
设H和K为复Hilbert空间,且ψ为B(H)到B(K)的保数值域反乘法满射,证明了存在A∈B(H,K),使和对每个T∈B(H)都有形式ψ(T)=AT^*A^-1,其中T^*为T的共轭算子。  相似文献   

8.
设B(H)是维数不小于3的复Hilbert空间H上的有界线性算子全体组成的代数。刻画了在部分等距集合上双边保持偏序和正交性的双射,并回答了Molna'r在2002年提出的一个问题。作为应用,证明了B(H)上的可加满射φ双边保持部分等距的充分必要条件为,存在H上的两个酉算子或共轭酉算子U、V使得X∈B(H)都有下列之一成立:(1)φ(X)=UXV;(2)φ(X)=UX*V。  相似文献   

9.
设R是特征为2包含非平凡对称幂等元的单位素~*-代数.对A,B∈R,定义A·B=AB+BA~*为新积,(A·B)_2=(A·(A·B))为2-新积.设φ:R→R是满射.对所有A,B∈R,如果φ满足(φ(A)·φ(B))_2=(A·B)_2当且仅当对所有A∈R,存在α∈C_S且α~3=I使得φ(A)=αA,其中I是R的单位,C_S是R的对称可延拓中心.作为应用,得到了素C~*代数和因子von Neumann代数上保持上述性质映射的结构.  相似文献   

10.
利用算子组的联合数值域解释算子代数的独立性,得出C*代数C的子C*代数A和B均为量子独立的,当且仅当对所有的A∈A+,B∈B+,有W(A,B)=W(A)×W(B),其中W(A,B)表示算子组(A,B)的联合数值域.  相似文献   

11.
设X是维数大于1的Banach空间且ξ≠±1。如果对任意的A,B∈B( X)且ABA=A,线性映射φ:B( X)→B( X)满足φ([ A,B]ξ)=[φ( A),B]ξ+[ A,φ( B)]ξ,则φ是导子。  相似文献   

12.
设M是包含非平凡投影P的单位素环.利用算子论方法证明了:如果φ:M→M是非线性Lie中心化子,则存在λ∈■及映射ξ:M→■满足ξ([A,B])=0(A,B∈M),使得对任意的X∈M,有φ(X)=λX+ξ(X)I.  相似文献   

13.
设H1,H2,…是一列复的可分Hilbert空间,φ是从∑(+) (Hk)到自身的保谱乘法自伴满射(不假定φ具有线性和连续性),则存在酉算子U∑(+)Hk→∑(+)Hk,使得对任意A∈∑(+)β(Hk)都有φ(A)=UAU*.  相似文献   

14.
设H和K是复Hilbert空间,A和B分别是H和K上的维数大于1的因子von Neumann代数。设Φ:A→B是双射且满足条件Φ(A*B-ξB*A)=Φ(A)*Φ(B)-ξΦ(B)*Φ(A),?A、B∈A。证明了以下三个结论:(1)当ξ=0时,Φ是线性或共轭线性*-同构;(2)当ξ∈R/{0,1,-1}时,若Φ保单位元,则Φ是线性或共轭线性*-同构;(3)当ξ∈C/R,若Φ保单位元,则Φ是线性*-同构。  相似文献   

15.
本文通过对算子方程UA=A*U的讨论,给出了J.B.Conway于[1]中提出的自对偶次正常算子的一个内蕴性描述. 定义设H是可析的Hilbert空间,U是日上的酉算子,如果H上的算子A满足方程UA=A*U,则称A为U自共轭算子(U self adjoint,本文简记为U s.a.). U s.a.算子具有如下初等性质: 性质1 A是U s.a.算子,则σ(A)与σ_(?)(A)关于实数轴对称.当λ∈σ_(?)(A)时,A-λ与A-λ的Fredholm指标互为相反数,特别当λ为实数时,ind(A-λ)=0. 证显然,由方程UA=A*U,可知σ(A),σ.(A)是关于实数轴对称的.又根据U  相似文献   

16.
讨论了连续时间Guichardet-Fock空间L2(Γ;η)中修正随机梯度算子及修正点态随机梯度算子族{s;s∈R+}的性质。讨论表明:修正随机梯度算子是L2(Γ;η)中的稠定无界线性算子,而修正点态随机梯度算子族{s;s∈R+}及其共轭族{*s;s∈R+}是L2(Γ;η)中的有界线性算子,具有很多性质:满足典则反交换关系和幂零性;{s;s∈R+}与{*s;s∈R+}的不等时复合可交换,即s*s=*ss,对∠s≠t;同时{*ss;s∈R+}是L2(Γ;η)上一族正交投影。另外,利用{s;s∈R+}和{*s;s∈R+},构造了L2(Γ;η)上一个酉算子群。  相似文献   

17.
设N为纯原子nest,满足0 ≠0,H-=H,ψ:algN→algN为保数值域乘法满射,本证明了,对任意T∈algN,有ψ(T)=ATA^-1,其中A为有界可逆算子。  相似文献   

18.
首先讨论了Dirichlet空间上Toeplitz算子组Fredholm谱的表示,证明了:当φi∈H∞1(D) C1()(i=1,2,...,n)时,(Tφ1,Tφ2,…,Tφn)的右Fredholm谱SP, re(Tφ1,Tφ2,…,Tφn)与Fredholm谱SP, e(Tφ1,Tφ2,…,Tφn)相同;当φi∈C1()(i=1,2,...,n)时,(Tφ1,Tφ2,…,Tφn)的左Fredholm谱 SP, le(Tφ1,Tφ2,…,Tφn)与Fredholm谱SP, e(Tφ1,Tφ2,…,Tφn)相同.然后讨论了Dirichlet空间上Toeplitz算子与算子组的凸性问题.证明了乘法算子Mz是非凸型的,这与Hardy, Bergman空间上所有乘法算子都是凸型算子不同.也证明了:T=(Tz,Tz2)不是联合凸型算子;若φi∈H∞1(D) (i=1,2,…, n),则W(Tφ1,Tφ2,…,Tφn)是凸集.本文还给出了一个一般性的结论:假定H为Hilbert空间,T∈B(H)为一个有界线性算子,当n=2m时有σ(Tm,Tn)={(λm,λn)λ∈σ(T)}.  相似文献   

19.
多圆盘上Hardy空间之间复合算子列的总体紧性   总被引:1,自引:0,他引:1  
设φ:Dm→D为全纯映射,对ξ=(ξ1,ξ2,…ξm)∈Tm,文章利用切片函φξ:D→D,φξ(z)=φ(zξ)定义的计数函数Nφ(z)=∫TmNξ(z)dσ(ξ)研究复合算子列Cφn:H2(D)→H2(Dm)n的总体紧性。得到了如下定理:设φn:Dm→D为全纯映射列,Cφn:H2(D)→H2(Dm)为一致有界复合算子列,则η∞({n})=0当且仅当lim n→∞∣z∣→-Nφn(z)-log∣z∣=0。  相似文献   

20.
研究了因子von Neumann代数中套子代数上由零积确定的子集中保ξ-Lie积的线性映射与同构和反同构的关系.证明了若对任意的A,B∈algMβ且AB≠0满足φ([A,B]ξ)=[φ(A),φ(B)]ξ,则φ或者是一个同构,或者是一个反同构,其中,algMβ和algMγ是因子von Neumann代数M中的两个非平凡套子代数,φ:algMβ→algMγ是一个线性双射,满足φ(I)=I且ξ≠0,1是常数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号