首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
首先通过水热法合成了Fe3 O4纳米花球,并在其表面均匀地修饰了酰胺基功能化的RF(resorcinol-formaldehyde resin)层,再利用原位还原法将Cu2 O负载在Fe3 O4纳米球表面,最后将Ag纳米颗粒沉积在Fe3 O4/Cu2 O材料表面,从而制备了Fe3 O4/Cu2 O-Ag纳米复合材料.采用扫描电子显微镜(SEM)、X射线衍射(XRD)、振动样品磁强计(VSM)等手段对Fe3 O4/Cu2 O-Ag纳米复合材料的形貌、物相组成和磁学性能进行了表征.此外,以多环芳烃类污染物芘(Pyr)为目标物,对Fe3 O4/Cu2 O-Ag材料的实际SERS检测性能进行了讨论和分析.结果表明,该纳米复合材料具有优异的SERS活性和磁响应能力,为环境中多种污染物的检测提供了高效低成本的新选择.  相似文献   

2.
采用简易的高分子网络凝胶法首先制备了微量Ag掺杂的ZnO,进而分别复合CuO、Mn2O3和Ag,得到了Zn(Ag)O-CuO、Zn(Ag)O-Mn2O3和Zn(Ag)O-Ag纳米复合材料.X射线衍射(XRD)测试表明氧化物或Ag的复合使ZnO的结晶性变差;扫描电镜(SEM)观察到氧化物(CuO、Mn2O3)的复合使ZnO颗粒尺寸变大,而Ag的复合则使颗粒变小且更均匀;X射线光电子能谱(XPS)揭示氧化物(CuO、Mn2O3)的复合引入更多的氧空位缺陷,而Ag的复合则晶格氧更多;表面光电压(SPV)光谱证实Zn(Ag)O-Ag比Zn(Ag)O-CuO、Zn(Ag)O-Mn2O3的光生载流子分离能力更强.在模拟太阳光照射下,Zn(Ag)O-Ag对亚甲基蓝降光催化解速率最高,归因于较小的颗粒尺寸与良好ZnO-Ag异质结的形成.虽然CuO和Mn2O  相似文献   

3.
在Fe_3O_4存在下,以聚乙烯吡咯烷酮(PVP)为分散剂和还原剂,利用简单的一步法制备了Fe_3O_4@SiO_2/Ag纳米复合材料。所制得的Fe_3O_4@SiO_2/Ag纳米复合物对罗丹明B(RhB)具有较好的表面拉曼光谱增强(SERS)效果,可以用作SERS基底。二氧化硅作为贵金属Ag纳米颗粒的载体,不仅可以起到分散贵金属的作用,还可以稳定金属相,更好地吸附RhB,使SERS效应得以稳定,可用于痕量检测,其检测极限可达1×10~(-12)mol/L。此外,该材料具有较好的磁性,方便回收再利用。该复合材料制备方法简便易行、条件温和,为合成其他纳米复合材料提供了启示。  相似文献   

4.
磁性纳米复合粒子表面接枝聚苯乙烯磺酸钠的制备   总被引:1,自引:0,他引:1  
合成了聚苯乙烯磺酸钠接枝Fe3O4/SiO2纳米复合材料.通过表面引发原子转移自由基聚合在Fe3O4/SiO2磁性纳米粒子表面包覆了阴离子聚电解质(聚苯乙烯磺酸钠).利用透射电子显微镜(TEM),傅立叶变换红外光谱仪(FT-IR),震荡磁力计(VSM),X射线能谱仪(EDS),全自动X射线衍射仪(XRD)等仪器对所制备的复合材料进行了表征,成功制备了尺寸均一的聚苯乙烯磺酸钠接枝Fe3O4/SiO2核壳结构的纳米复合材料.  相似文献   

5.
生物大分子与银纳米粒子之间的界面作用令人倍感兴趣.表面增强拉曼散射(Surfac enhanced Raman Scattering,SERS)技术[1],为解界面问题提供了有力的研究手段.本文以银纳米粒子作为SERS的活化基体[2],采用表面增强Raman光谱研究血清白蛋白与Ag纳米粒子的界面作用.  相似文献   

6.
采用水热合成和光合成法制备了ZnO纳米粉体及不同Ag修饰量的纳米ZnO(Ag/ZnO),并用X射线衍射(XRD)、扫描电子显微镜(SEM)分析了它们的物相结构和晶粒形貌.以亚甲基蓝为污染物模型,在紫外光照射下考察了ZnO纳米粉体及不同Ag修饰量的纳米Ag/ZnO的光催化活性.结果表明,Ag能成功地负载到ZnO表面,且Ag/ZnO的光催化性能与Ag的负载量有关.当Ag修饰量为1.0%时,光催化能力高于ZnO纳米粉体;Ag修饰量为5.0%时,光催化能力最高;Ag修饰量为8.0%时,光催化能力反而降低.  相似文献   

7.
采用原位共沉淀法低温下制备出Fe_3O_4/CNTs纳米复合材料.利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱仪(XPS)、共焦拉曼光谱仪(Raman)等表征手段对样品的化学成分、结构、形貌和性能进行了测试表征.实验结果表明,Fe_3O_4纳米颗粒成功包覆到CNTs的表面及填充到CNTs空腔内,形成磁性Fe_3O_4/CNTs纳米复合材料.Raman结果显示,复合后石墨化结构减少,材料的缺陷增多.样品具有良好的超顺磁性和高分散性,在实际应用中展示出良好的吸附性能,并能在外加磁场作用下实现吸附剂的回收再利用.实验中,样品对MB的吸附动力学接近于拟二阶动力学模型.  相似文献   

8.
采用光分解法成功在Ag2CO3颗粒上制备了Ag2CO3/Ag2O异质p-n结.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、拉曼光谱仪(Raman)和紫外-可见光分光光度计对样品的结构、形貌和光学性能进行表征.以甲基橙(MO)为模型污染物,考察Ag2CO3/Ag2O复合光催化剂在可见光下作用下的光催化性质.结果表明,Ag2CO3/Ag2O异质p-n结能够促进光生电荷的分离,有效提高了Ag2CO3的可见光光催化活性.光催化反应进行80 min后,Ag2CO3/Ag2O复合光催化剂对甲基橙降解率达到86%,而纯Ag2CO3只能降解51%的甲基橙.结果表明表面修饰Ag2O的Ag2CO3复合材料是一种高活性的光催化剂.  相似文献   

9.
纳米复合材料Ag/ZnO的制备及紫外光催化降解染料   总被引:1,自引:0,他引:1  
采用溶胶-凝胶-程序升温溶剂热一步法制备了纳米复合材料Ag/ZnO,通过X射线衍射(XRD)以及扫描电子显微镜配合X-射线能量色散谱仪(SEM-EDS)等测试手段对其结构、形貌等进行了表征.结果表明,复合材料中Ag成功地掺杂在ZnO上,且合成产物Ag/ZnO具有六方晶系纤锌矿结构.为考察上述复合材料的光催化活性,在紫外光照射下,对酸性品红、罗丹明B、孔雀石绿、亚甲基蓝等染料进行了光催化实验研究,结果表明,该复合材料具有较好的可见光催化活性.  相似文献   

10.
首先利用水热法制备了Bi_4Ti_3O_(12)纳米片,再通过原位沉积和光还原的方法制备了Ag/Ag Br/Bi_4Ti_3O_(12)纳米片复合光催化剂.利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、紫外可见漫反射谱(DRS)及X射线光电子能谱仪(XPS)对其结构进行表征,以卡马西平(CBZ)作为目标污染物对其光催化活性进行评价.结果表明:Bi_4Ti_3O_(12)纳米片的厚度小于50 nm,长度小于500 nm.Ag/Ag Br的颗粒度小于20 nm.Ag/Ag Br的复合极大地提高了催化剂对卡马西平的光催化降解效率,光催化活性的提高主要是由于Ag/Ag Br可以显著抑制光生电子和空穴的复合.催化机理研究发现光生h~+在CBZ的光催化降解过程中起主要作用.  相似文献   

11.
采用水热法合成了SnO_2纳米粒子,并作为SERS活性基底进行了研究.采用XRD、TEM、UV-Vis、XPS等表征手段对其晶形、形貌、组成等进行了表征和分析.选用4-MBA分子作为拉曼探针分子,拉曼测试研究表明,SnO_2纳米粒子作为SERS活性基底,可以展现出优异的SERS性能.  相似文献   

12.
糖精是食品工业中最古老的人造甜味剂之一,因为没有卡路里而被广泛使用,但其滥用是非法的,食品中最大允许添加量为8.189×10~(-4)mol·L~(-1).介绍了以六磷酸肌醇(IP6)为保护剂合成的银(Ag)纳米粒子(Ag NPs),即Ag NPs@IP_6,并提出了一种基于表面增强拉曼散射(SERS)的快速方法 .探讨了食品中糖精的测定,用最佳SERS法测定水中糖精的最低可检测浓度可达50 nmol·L~(-1),符合食品添加剂耐受性水平的国家食品安全标准.提出了基于便携式拉曼的Ag NPs@IP_6的SERS方法,可用于现场检测食品中的糖精,如新鲜枣果.  相似文献   

13.
从实验上获得了水杨酸(salicylic acid,SA)的常规拉曼散射(Normal Raman Scattering,NRS)光谱以及其吸附在Ag纳米颗粒上的表面增强拉曼散射(Surface-enhanced Raman Scattering,SERS)光谱.应用密度泛函理论(Density functional theory,DFT)在B3LYP/6-31+G**(C、H、O)和LANL2DZ(Ag)基组水平上对SA分子进行了结构优化,并计算了SA分子的NRS光谱以及其吸附在Ag纳米颗粒上两种不同构型体系的SERS光谱.通过理论结果与实验值对比,发现SA分子通过羧基吸附构型比羧基与羟基共同吸附构型的计算结果与实验值符合得更好.最后,利用Gauss View可视化软件对其振动模式进行了详细指认.经分析得出:在银溶胶中,SA分子是通过羧基倾斜地吸附在银纳米颗粒表面的.  相似文献   

14.
采用一步液相还原法合成了系列Cu_2O/Ag_x复合催化剂,使用X射线衍射谱(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱(DRS)、电子顺磁共振谱(EPR)等分析手段对样品进行表征和分析.结果显示,复合催化剂Cu_2O/Ag_x表面附着大量的纳米金属Ag,形成无数的纳米岛,使得样品的表面等离子体共振效应大幅增强,导致催化剂在紫外、可见和近红外光谱区域的光吸收非常强.在无超声分散、黑暗条件下Cu_2O/Ag_x催化剂可以有效地还原Cr(Ⅵ),其中Cu_2O/Ag_(0.15)样品的催化还原效率最高.当存在0.01 mol/L的柠檬酸缓冲液(pH 5.0)时,100 mg/L的Cr(Ⅵ)在黑暗下于30 min内被完全还原为Cr(Ⅲ).另外,对Cu_2O/Ag_x体系催化还原Cr(Ⅵ)的机理以及柠檬酸的作用进行了初步探讨.  相似文献   

15.
以六方密排聚苯乙烯小球阵列为模板,利用倾斜磁控溅射方法制备了倾斜Ag纳米棒阵SERS活性基底.通过514 nm激发线拉曼光谱测试发现,随着周期性Ag纳米棒阵列倾斜角度的增加,修饰在其表面的4-MBA分子的A1震动模式处所对应的主峰出现了明显的红移现象.通过时域有限差分(FDTD)数值模拟和线偏振拉曼光谱结合的方法,准确解释了拉曼光谱中主峰产生红移现象的根本原因.  相似文献   

16.
以硅纳米孔柱阵列(Si-NPA)为衬底,采用浸渍还原法制备了一种图案化的硅基银纳米结构(Ag/Si-NPA).以Ag/Si-NPA为表面增强拉曼散射(SERS)的活性基底,实现了对鸟嘌呤、胞嘧啶和胸腺嘧啶三种DNA碱基的低浓度探测.结果表明,三种DNA碱基分子均通过羰基和氮原子倾斜吸附于Ag/Si-NPA表面且吸附位点类似,但倾斜角略有不同.随着溶液浓度的降低,碱基分子更趋向平行吸附于基底表面.由此证明,Ag/Si-NPA可以显著增强DNA碱基分子的拉曼散射效应,是一种可用于低浓度生物分子检测的性能优异的SERS活性基底.  相似文献   

17.
表面增强拉曼散射效应自1977年被发现以来,表面增强拉曼光谱(SERS)技术经历了波浪式行进发展.SERS及其2个重要衍变技术针尖增强拉曼光谱(TERS)和壳层隔绝纳米粒子增强拉曼光谱(SHINERS)已成为该领域的3个主要发展核心.SERS可表征样品衬底材质的普适性以及可表征样品形貌的普适性是长期制约SERS发展的2个瓶颈问题,本文综述了田中群教授团队在解决这2个瓶颈问题方面所做的主要贡献,包括将SERS应用拓展到过渡金属表面,发明的SHINERS技术基本克服了SERS的诸多局限,SERS和SHINERS在界面电催化、光电催化机理等方面的基础科学研究,以及SERS乃至拉曼光谱在食品安全、临床检测等多个涉及痕量化学检测领域的广泛应用.  相似文献   

18.
在低温水热条件下,以AgNO3、Na2SeO3或单质硒为反应物,制备了金属硫族化合物Ag2Se纳米晶.用X射线粉末衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)分别对Ag2Se纳米晶的结构及形貌进行了表征分析.结果表明,所得样品为正交晶系的Ag2Se纳米晶,主要形貌为不规则的纳米颗粒;同时采用不同硒源及表面活性剂聚乙烯吡咯烷酮(PVP)可以获得不同形貌的纳米晶.  相似文献   

19.
表面增强拉曼光谱(SERS)以其简单、快速、高灵敏度等优点在食源性致病菌检测应用领域备受关注.本文基于SERS的指纹光谱优势,结合数学统计方法,实现了对食品中3种常见致病菌(大肠杆菌、金黄色葡萄球菌、粪肠球菌)的鉴别分析.研究中考察了SERS基底与细菌的不同结合方式,即带负电银纳米粒子直接与细菌混合吸附(Ag NPs--细菌)、带正电银纳米粒子直接与细菌混合吸附(Ag NPs+-细菌)、在细菌表面原位生长银纳米粒子(细菌@AgNPs),以及分散溶剂对SERS光谱结果的影响.随后,基于获得的3种细菌的SERS指纹光谱,比较了多种数学统计方法的分类效果.结果表明,通过层次聚类分析、主成分分析和正交偏最小二乘判别分析法,均能对3种食源性致病菌进行区分,为利用SERS技术鉴别食源性致病菌提供了技术借鉴.  相似文献   

20.
Au-Ag共掺杂TiO_2纳米片的制备及其光催化性能   总被引:2,自引:0,他引:2  
为探索Au-Ag共掺杂TiO2纳米片的光催化活性,采用光化学还原法成功地制备了Au-Ag/TiO2纳米光催化材料,并且通过XRD、DRS、TEM手段对制得的催化剂进行了表征.同时以X3B染料为降解对象,紫外灯为光源,比较了催化剂的光催化性能.研究发现Au-Ag/TiO2(HSA)催化效果好于Au-Ag/TiO2(P25)和TiO2(HSA).对比负载量(质量分数Au/Ag/TiO2)分别为1∶1∶100和2∶2∶100二者催化活性的大小,结果表明:负载量为1∶1∶100的光催化活性较好,且其可重复利用性远优于负载量为2∶2∶100的催化剂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号