首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
为了改善电动汽车的动力性和经济性,越来越多的研究者选择在电动汽车上加装无动力中断变速器。该文关注无动力中断变速器的换挡过程的控制方法,以减少换挡过程中的冲击和滑摩功;展示了一种无动力中断变速器的结构,并建立电动汽车传动系统的模型;然后对模型进行离散化,针对特定的评价函数进行最优化分析,得到最优控制序列和轨迹。在此基础上,应用一种结合前馈控制和反馈控制的控制方法对变速器进行控制。仿真结果表明:该控制方法能够减少换挡过程的滑摩损失,降低换挡过程中车辆冲击度。  相似文献   

2.
提出一种仅用一个摩擦离合器实现无动力中断换挡的新型自动变速器——超越离合器辅助换挡自动变速器.该变速器采用摩擦离合器与超越离合器交替传递动力的方式实现连续换挡.为研究该自动变速器的换挡平顺性问题,搭建了两个挡位的6自由度变速器动力学模型,提出了换挡过程中离合器和动力源的协调控制策略,开展了仿真和台架试验研究.结果表明:所提升挡和降挡控制策略能有效降低换挡冲击,使得换挡时的冲击度保持在10m·s~(-3)以内.  相似文献   

3.
为提高两档AMT纯电动汽车的换挡平顺性及减少换挡时间,建立了详细的纯电动汽车动力传动系统的数学模型,制定驱动电机参与换挡过程的综合协调控制方法,从允许的最大换挡冲击度出发得出转矩相阶段电机扭矩控制律,惯性相阶段采用PID和有限状态切换的控制策略进行电机调速.最后搭建纯电动汽车传动系统试验台架,对升挡和降挡过程中换挡协调控制策略进行仿真分析与试验验证.仿真结果显示:0~100 km/h全加速的升挡时间为0.5 s,纵向冲击度在8.0 m/s~3以内,NEDC市区工况升降挡时间均在0.6 s以内,最大冲击度未超过7.8 m/s~3;试验结果显示:驱动电机在固定转速下的升降挡时间分别为0.6 s和0.8 s,输出轴转速变化平滑.传统AMT车辆的换挡时间为0.8~1.0 s,上述结果表明该换挡综合协调控制策略能够实现快速、平稳换挡.  相似文献   

4.
该文研究了纯电动客车动力保持型三挡电控机械式自动变速器(AMT)的动力学特性,该AMT可消除换挡时的动力中断。利用Lagrange方程,建立动力保持型三挡AMT动力学模型;采用MATLAB/Simulink,对安装动力保持型三挡AMT和未安装变速器的目标车型,作了加速、减速全过程仿真和动力性对比;通过模型得到换挡过程中离合器、制动器的力矩曲线,分析了驱动电机输入转矩和主减速器输出转矩;结合动力学方程,验证了换挡过程动力保持的可行性。结果表明:安装动力保持型三挡AMT,有助于改善纯电动客车的动力性,实现换挡时的动力保持。  相似文献   

5.
为了延长纯电动汽车续驶里程,文章应用基于支持向量机的方法对纯电动汽车实现经济性换挡控制,通过试验数据获得电机、逆变器和变速器的效率特性,建立纯电动汽车的能量消耗模型;在城市道路循环工况(UDDS)下应用车速和加速度双参数获得经济性最优挡位信息,形成学习数据库;应用支持向量机分类器和传统换挡规律在欧洲行驶工况(ECE)下进行在线预测和仿真对比。该文对纯电动汽车变速器智能换挡控制的研究,对于提高整车经济性具有一定的理论意义和实用价值。  相似文献   

6.
针对一种纯电动汽车用离合器后置式二挡机械式自动变速器(AMT),提出将同步器布置于变速器第二轴的方案,通过离合器和同步器的切换控制实现无动力中断换挡.为使换挡过程中变速器输出扭矩变化平顺,综合考虑冲击度与滑摩功等换挡性能指标,针对换挡过程的不同阶段,采用相应的换挡协调控制策略:扭矩相时驱动电机扭矩保持不变,同时协调控制离合器扭矩;惯性相时分别采用PID、自适应模糊PID控制电机扭矩使离合器转速差跟踪目标轨迹.基于Matlab/Simulink建立整车纵向动力学模型并进行仿真试验.结果表明:所制定的换挡协调控制策略是有效的,相较于惯性相时采用PID控制离合器转速差,采用自适应模糊PID控制能有效改善换挡品质,换挡过程中最大冲击度和滑摩损失都有所减小,变速器输出扭矩变化平顺无动力中断,整车舒适性有较大提高.  相似文献   

7.
为了能够继承双离合变速器动力换挡的优点,并利用有限齿轮对数实现更多的速比,提出了一种新型动力换挡式自动变速系统.在对其结构和换挡过程进行深入分析的基础上,建立了基于整车应用的传动系统动态仿真模型,包括换挡动力学模型和控制模型;并对影响换挡品质的换挡控制参数进行了分析和优化;最后,以连续升档为例,利用仿真模型对新型变速系统的换挡性能进行了仿真验证.研究结果表明:该新型动力换挡式自动变速系统不仅可通过n+m对定轴齿轮副实现2(n+m)种不同的速比,而且能较好地实现动力换挡.  相似文献   

8.
提出了一种用于电动汽车的动力保持型二档机械式自动变速器,该变速器主要由行星齿轮系统、离心摩擦离合器、带式制动器构成,可以在两个档位之间进行无缝切换。解决了传统机械式自动变速器(AMT)在换档过程中存在的动力中断问题。建立了电动汽车动力传动系统的动力学模型,采用基于动态规划和带约束的凸优化的变速器换档过程的最优控制方法,以冲击度和滑摩功为评价指标,求解换档过程的最优控制量,实现变速器的最优换档控制。通过动力学建模与仿真,对基于最优控制的变速器换档控制进行分析和优化,对普通分段控制方法和最优控制方法进行对比。仿真结果表明:该最优控制方法能够有效提高电动汽车的换档舒适性,并在保证动力性能不降低的前提下减少离合器和带式制动器的摩擦损失。  相似文献   

9.
分析了无动力中断机械式变速器的换挡原理,建立了换挡过程的动力学模型,设计了针对该变速器的基于离合器扭矩容量预先控制的换挡策略.基于Matlab/Simulink软件,建立了该变速器的仿真模型,并以包括冲击度和滑磨功两个参量在内的最优换挡品质为目标,应用单纯形法和遗传算法等对换挡过程中节气门开度的控制参数进行了优化.仿真...  相似文献   

10.
兼顾纯电动汽车动力性与经济性指标,完成驱动电机、动力电池组和变速器的优化选型.然后,围绕电池组容量与质量之间对整车性能影响的矛盾关系,利用电涡流测功机测试不同电池质量等速行驶200 km的能量消耗,对动力电池进行优化选型.最后,采用区间优化设计方法对传动系参数进行优化设计.针对两挡电控机械式自动变速器(AMT)换挡过程中存在换挡冲击的影响,提出一种基于电机转矩控制的换挡策略及搭载电动汽车联合仿真模型,并对换挡控制策略和整车性能指标进行仿真分析.结果表明:动力系统优化匹配方法能很好地满足动力性和经济性行驶要求,续驶里程测试过程中变速器换挡冲击度小,换挡品质较高,验证了匹配方案、仿真模型与控制策略的有效性和准确性.  相似文献   

11.
纯电动汽车自动变速器换挡规律研究   总被引:1,自引:0,他引:1  
换档规律是自动变速器控制系统的核心技术,其控制参数选择的合理性直接影响纯电动汽车的动力性、舒适性和续驶里程.用纯电动汽车行驶加速度和加速踏板位置作为换挡控制参数,分别设计出动力性和经济性两种换挡规律,并用CRUISE软件进行仿真和优化,得出适合某型电动汽车变速器的换挡规律,实现了节能与增加续驶里程的目的.  相似文献   

12.
黄丽敏 《科学技术与工程》2012,12(19):4708-4712
为了使配置AMT变速器的纯电动汽车能够更好地发挥电机驱动系统的动力优势,提出了根据换挡后离合器接合时的发动机转速识别坡道行驶工况。根据当时的车速选择合适挡位的坡道换挡策略,并在装有AMT的纯电动汽车上进行了坡道换挡试验。试验结果表明,车辆在坡道行驶过程中,虽然初次选择的挡位不一定能适应该坡道,但通过连续式换挡或跳跃式换挡,最终能选择适合于该坡道的挡位。利用车辆现有的传感器,坡道换挡控制策略实现了坡道换挡控制,不仅满足车辆实际行驶工况的需要,而且使控制系统硬件得以简化。  相似文献   

13.
多速变速器作为电动汽车的速度切换元件,在换挡时存在明显的拓扑变化,然而在传动数学模型中忽视了这一重要现象,导致传动动态响应预测存在很大偏差。针对电动汽车多变速传动在换挡过程中的拓扑变化,本文提出的一种基于脉冲动量关系的变速箱拓扑变化模型,引入正交补码消除了非工作约束,分析了换挡拓扑变化引起的速度跳跃。基于变速箱试验台和MATLAB仿真模型,开展了试验和仿真研究,对包含速度跳跃的多速变速箱变速过程进行了仿真,通过对比试验结果验证了本文提出的拓扑变化模型的正确性,实现了变速器动态响应更真实的预测,该模型可应用于任何具有换挡功能的车辆变速箱。  相似文献   

14.
两挡电控机械自动变速器 (automatic mechanical transmission, AMT)可以优化电动汽车的驱动电机工作区间,改善整车的动力性和经济性,但在工作过程中,离合器的半结合点准确辨识对换挡性能影响很大。当离合器摩擦片磨损或膜片弹簧疲劳状态下,离合器实际工作位置发生偏移,需要通过自学习方式来准确辨识离合器半结合点位置,以保证变速器高质量换挡控制性能。以一种新型的电动汽车无动力中断两挡变速器I-AMT (Inverse AMT)为研究对象,针对其干式离合器磨损后半结合点位置发生变化等问题,提出一种离合器半结合点位置自学习策略,使得在离合器缓慢分离的同时,通过检测与离合器主动端相连的驱动电机转速编码器变化趋势,实现离合器半结合点位置准确辨识。试验表明,在离合器存在磨损的情况下,该策略能够准确识别离合器半结合点位置,从而自适应调整变速器工作状态,以保证I-AMT高质量无动力中断换挡。  相似文献   

15.
为解决双离合器自动变速器的双离合器总成模块难于生产制造的问题,提出了一种新型的分置式双离合器自动变速器技术方案,分析了该方案的结构特点和工作原理;建立了该变速器的动力学模型,并分析了变速器起步和换挡过程的运动学关系;然后根据整车参数的要求,对变速器主要参数进行了设计;利用AVL Cruise仿真软件,建立整车动力传动系统模型,并进行了整车性能仿真,仿真结果表明:该设计方案的变速器不仅满足了车辆设计要求,而且与普通的双离合器自动变速器相比,在最高车速、最大爬坡度、加速时间、循环工况油耗方面的性能差距在2.5%以内。因此,该分置式双离合器自动变速器设计方案的双离合器模块克服了双离合器自动变速器的双离合器总成难于生产制造的缺陷,具有较好的应用和参考价值。  相似文献   

16.
针对电控机械式自动变速器(AMT)在换挡过程中会出现动力中断的问题,提出一种双电机输入结构,在换挡时通过辅助电机进行驱动来弥补动力中断的不足.建立了传动系统模型,通过伯恩斯坦多项式来控制两个电机转矩的下降和上升,以协调两者之间的转矩控制.提出一种柔性换挡控制策略,通过车速和加速踏板开度识别复杂工况,根据驾驶员意图修正车速改变换挡时机,达到减少换挡次数的目的.Matlab/Simulink仿真结果表明:采用柔性换挡控制策略之后,在FTP72(美国城市驾驶循环工况)工况下可有效减少约50%的换挡次数;同时,经济性不会受到较大影响.  相似文献   

17.
湿式双离合器自动变速器换挡控制与仿真分析   总被引:1,自引:0,他引:1  
建立了湿式双离合器自动变速器(dual clutch transmission,DCT)换挡过程系统动力学模型,针对湿式双离合器系统的高度非线性、难以建立精确数学模型等特点,设计了多规则因子模糊控制器。制定了湿式双离合器换挡过程控制策略,该控制策略通过综合控制发动机和离合器压力来完成换挡过程中的动力切换。基于Matlab/Simulink软件平台,建立了湿式DCT传动系统的仿真模型,对换挡过程进行了仿真。结果表明,该控制策略能够满足DCT换挡过程的要求,并且控制器的跟踪性能良好。最后,讨论了换挡控制的影响因素。  相似文献   

18.
在考虑电动空调对电动汽车整车性能影响的基础上,对一款两挡变速纯电动汽车动力传动系统包括蓄电池、驱动电机和变速器参数进行了匹配设计。基于所选部件综合效率模型,制定了经济性换挡策略,并以循环工况能耗最小为目标对初选速比进行优化。仿真结果表明:匹配参数不但兼顾了整车质量不至过重而且又确保动力性和续驶里程符合设计要求,在初选速比基础上的速比优化使得续驶里程在关闭空调时延长5.28%,开启空调时延长4.29%。  相似文献   

19.
以一款三相交流异步电机为动力源的纯电动汽车为研究对象,搭建了三相交流异步电机动力传动系统试验台,研究了三相交流异步电机在转速控制模式下的堵转特性,得到了不同转速偏差下的电机转矩响应规律。建立了纯电动汽车坡道识别模型和起步过程中各控制量的计算模型,提出了一种基于电机堵转特性的纯电动汽车坡道自适应起步控制策略,通过Matlab/Simulink软件建立了仿真模型,对不同坡道的上坡起步和下坡起步进行了仿真研究,结果表明,提出的起步控制策略能够较好地适应纯电动汽车的坡道起步。  相似文献   

20.
针对采用自动变速箱(AMT)的混合动力汽车存在换挡动力中断问题,提出一种新型双电机混合动力驱动系统,该系统主要包括1台发动机、2个电机和1个四挡变速箱。通过控制发动机、电机、离合器与同步器的工作状态,该混合动力系统可实现纯电动驱动、发动机和电机并联驱动、串联驱动、制动能量回收以及行车发电等多种工作模式。采用集中质量法和牛顿第二定律对该驱动系统进行动力学分析,将其等效为质量-弹簧-阻尼系统,并建立动力学方程。通过查表法建立了发动机和电机模型。结合混合动力驱动系统结构特点,设计模式切换和换挡过程的控制策略,在模式切换和换挡过程中,结合发动机和电机的扭矩响应特性,对发动机和电机输出扭矩进行协调控制。采用基于发动机输出扭矩的电机扭矩补偿策略维持汽车驱动扭矩,避免出现换挡动力中断现象。基于AMESim和MATLAB/Simulink软件平台搭建整车模型及控制策略模型,并对模式切换和换挡过程进行仿真分析。研究结果表明:双电机混合动力驱动系统可实现车辆换挡过程中输出扭矩平顺变化,无动力中断现象;通过限制发动机和电机的扭矩变化率,以及离合器和同步器等执行机构的分离接合速度,可将模式切换和换挡过程的冲击度控制在合理范围内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号