首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
虽然已有许多文献给出了厚壁筒多条裂纹应力强度因子的计算方法和计算公式,但还没有见到关于局部自增强厚壁圆筒中压缩残余应力引起的多条非对称裂纹应力强度因子的文献发表,本文推导了用权函数法计算这种裂纹的应力强度因子的计算公式,借助于已经发表的其它载荷情况下的有限元结果,对一个大的裂纹几何参数根据权函数公式计算了其应力强度因子,可供从事这方面工作的工程技术人员参考。  相似文献   

2.
假设材料的剪切模量按双曲函数变化,采用积分变换—对偶积分方程方法,求得裂纹尖端应力场和应力强度因子.研究表明,应力强度因子随裂纹位置的变化而变化,而且裂纹越靠近板边,应力强度因子随裂纹位置的变化越显著.  相似文献   

3.
采用复变函数方法,研究了I型弯折裂纹的平面弹性问题,通过引用适当的保角映射和特殊应力函数,得到了弯折裂纹尖端I型问题应力强度因子的解析解.结果表明,当β=0时,这个结果可以还原到最简单的直线裂纹的情况.  相似文献   

4.
研究了在SH波作用下基体中圆形夹杂与内裂纹的相互作用问题,主要采取Green函数和裂纹切割相结合的方法.首先,构造本文需要的Green函数基本解,该基本解为基体内含夹杂时夹杂内任一点承受时间谐和的出平面线源荷载作用时的位移函数.然后,从基体圆形夹杂对SH波散射问题出发,沿裂纹位置施加一应力,该应力与夹杂对SH波散射产生的应力大小相等,方向相反,从而形成裂纹,进而可得到夹杂和裂纹同时存在时的位移与应力函数式,利用此函数式讨论夹杂周围的动应力集中情况.最后,给出算例,讨论了入射波数、入射角度、裂纹大小、基体和夹杂材料性质等因素对此问题的影响.  相似文献   

5.
针对实际工程中广泛存在的孔洞边缘含有随机微裂纹的孔口应力分析问题建立了理论模型.利用微裂纹在小尺度下的局部保角性构造近似的复变函数,通过对微裂纹与宏观孔洞的尺度分离获得了不同尺度下椭圆孔口的应力场,并扩大了复变函数的应用范围.结果表明,通过近似的复变函数的构造和微裂纹与宏观孔洞的尺度分离,能够准确计算含微裂纹椭圆孔口的应力场和应力强度因子.当含随机微裂纹的椭圆孔洞所在平面承受竖向均布载荷时,椭圆长短轴的比值越大,应力强度因子的极值越大,且应力强度因子沿椭圆边缘的衰减速度越快;当椭圆长短轴的比值足够小时,微裂纹位置对应力强度因子的影响不大.  相似文献   

6.
研究了正交异性板中星形裂纹的平面弹性问题.采用复合材料断裂复变方法,选取适当的保角映射和特殊应力函数推出了裂纹尖端附近的应力场及Ⅰ型、Ⅱ型星形裂纹应力强度因子的解析解.  相似文献   

7.
基于三角形网格,对裂缝扩展过程中流形单元变化情况进行了深入研究,从几何网格的角度对数值流形方法的连续与非连续统一处理方式进行解读.采用一阶覆盖函数,推导出数值流形算法的权函数表达式,建立局部位移函数.通过数值流形计算程序,得出裂缝尖端位移,并计算尖端应力强度因子.通过经典的中心裂纹板模型,对数值流形位移法求得的尖端应力强度因子进行验证,算例的数值解和解析解吻合度较高,证明数值流形法计算裂缝扩展的准确性,为裂纹扩展过程中尖端应力强度因子的求解提供了新的数值解法.  相似文献   

8.
对各向异性复合材料板的周期性Ⅱ型裂纹尖端应力场进行了有关的力学分析,通过求解一类线性偏微分方程的边值问题,引入Westergaard应力函数、采用复变函数方法及待定系数法,给出在无穷远处受对称载荷τ作用下,周期性Ⅱ型裂纹尖端的应力强度因子,推出了各向异性复合材料板周期性Ⅱ型裂纹尖端附近应力场的理论计算公式。  相似文献   

9.
采用各向异性体平面弹性理论中的复势方法,引用适当的保角变换,研究各向异性板中穿透性直线裂纹的平面弹性问题。借助应力边界条件推出应力函数的表达式,得到Ⅰ型裂纹尖端附近的应力强度因子、应力场及位移场的解析解.  相似文献   

10.
对于Ⅰ型和Ⅱ型这样简单的裂纹问题,用Westergaard应力函数可以简单地求解出应力场及位移场;对于Ⅰ-Ⅱ复合型这样复杂的裂纹类型,很难甚至不可能寻求其Muskhelishvili应力函数.通过具体实例试图给出一种探求Ⅰ-Ⅱ复合型裂纹的Westergaard应力函数方法,经验证找到了两种应力函数之间必然的数理逻辑联系,并将两者统一起来,说明了两种方法对于求应力场及位移场的等效性.  相似文献   

11.
利用无网格局部Petrov-Galerkin(MLPG)方法分析了受瞬态载荷作用的动态断裂力学问题.采用移动最小二乘近似函数为试函数,并利用罚函数法施加本质边界条件.同时,利用纽马克法进行时间积分.最后求解了双缺口板尖端附近的应力场,以及Ⅰ型和Ⅱ型应力强度因子随时间的变化关系.算例表明:利用MLPG方法分析受瞬态常压力作用的动态断裂力学问题是可行的和有效的,且具有效率高和容易分析的特点.  相似文献   

12.
用局部Petrov-Galerkin方法分析弹性杆振动问题   总被引:1,自引:0,他引:1  
提出一维弹性动力问题的局部Petrov -Galerkin方法 ,这是一种真正的无网格方法。这种方法采用移动最小二乘函数来近似解变量 ,并且采用移动最小二乘近似函数的权函数作为加权残值法的权函数。文中对形成的离散动力学方程用Newmark方法求解 ,计算实例表明 :局部Petrov -Galerkin方法是一种很有效的求解弹性动力学问题的方法。  相似文献   

13.
用径向基函数构造无网格局部Petrov-Galerkin方法的形函数,插值函数具有Kronecker delta函数性质,因此可以很方便地施加本质边界条件.分析了板弯曲时剪切自锁现象产生的原因,利用无网格局部Petrov-Galerkin方法对两对边固支另对边简支中厚板的弯曲进行了分析和计算.发现无网格方法相对于有限元...  相似文献   

14.
基于加权残值法和移动最小二乘(MLS)法并结合局部Petrov-Galerkin无网格方法(MLPG)的灵活性,将移动最小二乘配点法应用到无网格方法当中,建立了MLS配点无网格法的基本方程.在局部子域上利用Petrov-Galerkin原理给出了微分方程局部弱形式,通过惩罚因子引入本质边界条件;将局部弱对称形式进行离散化后,推导出移动最小二乘配点的Petrov-Galerkin局部无网格系统的刚度矩阵、载荷矩阵.通过数值算例证明该方法具有很高精确性、有效性和实用性.  相似文献   

15.
把无网格Petrov-Galerkin(MLPG)法推广应用于弹塑性材料大变形和应变局部化问题。把空间坐标表示的基本变量在材料坐标上进行积分,避免了更新积分子域的形状。形函数及其对材料坐标的导数在迭代开始前计算并存储。形函数对空间坐标的导数及空间坐标下的子域边界外法线方向使用张量变换得到。采用乘法分解超弹塑性本构模型,以便模拟更大的变形。算例表明,推导的非线性MLPG方法能够精确模拟弹塑性材料的大变形,并能模拟应变弱化材料由于不稳定塑性变形导致的应变局部化现象。  相似文献   

16.
将基于自然邻接点插值的无网格局部Petrov-Galerkin方法应用于分析中厚板弯曲问题.自然邻接点插值创建的形函数具有Kronecker Delta函数性质,故能够准确地直接施加本质边界条件.在板中面上的局部多边形子域上采用局部Petrov-Galerkin方法建立系统平衡方程,这些子域由Delaunay三角形创建...  相似文献   

17.
竖向荷载作用下,超长桩的受力可以近似按照平面问题求解.本文通过综合分析,采用横向各向同性弹性半空间地基模型,利用局部彼得罗夫-伽辽金法(MLPG),考虑基桩大变形,编制了实用的计算机程序,并对超长桩在竖向荷载作用下的承载机理做了较深入的分析.  相似文献   

18.
本文提出了一种改进的无网格局部Petrov-Galerkin方法来分析平面弹性力学问题.这种无网格方法采用移动最小二乘近似函数(MLS)来近似试函数,采用Heaviside函数作为加权残值法中的权函数,采用直接插值法来施加本质边界条件.最后通过数值实例表明平面弹性力学问题中改进的无网格Petrov-Galerkin方法具有收敛快、稳定性好、精度高和简单有效的特点.  相似文献   

19.
将二维平面问题的无网格局部Petrov-Galerkin法拓展到三维的相应理论中,编制了该法相应的三维Fortran程序.分析了均匀受拉立方体和悬臂梁两个经典算例,将所得结果与有限元法和解析解对比.结果表明了无网格局部Petrov-Galerkin法在解决三维弹性静力问题时的可行性和有效性,相对于有限元方法在位移解和应力解上也具有更好的精度.  相似文献   

20.
利用基于滑动Kriging插值的无网格局部Petrov-Galerkin(MLPG)法来求解二维非线性稳态和瞬态热传导问题,Heaviside分段函数作为局部弱形式的权函数,并通过加权余量法推导相应的离散方程.该问题考虑了材料热传导系数随温度的线性变化,并通过拟线性法来求解非线性问题的解,时间域的离散通过向后差分法来实现.基于滑动Kriging插值构造MLPG中的形函数由于满足克罗内克δ性质,因此可以直接准确地施加本质边界条件.在构造刚度矩阵过程中,只涉及边界积分,不涉及区域积分和奇异积分.将数值计算结果与有限元法得到的结果加以对比可以看出,基于滑动Kriging插值的MLPG法能够很好地解决此类热传导问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号