首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
针对检测模型参数量大,难以在嵌入式设备上部署等问题,设计了一种改进的YOLOv4目标检测算法.该算法使用轻量化的MobileNetV1替换CSPDarketnet53主干特征提取网络,并将后续网络中的3×3卷积替换为深度可分离卷积,极大地减少了模型的参数量;在检测头加入NAM注意力模块,增强网络对细节信息的提取能力;采用SDIoU Loss作为边框回归损失,在加快收敛速度的同时提高了检测精度.实验表明:与YOLOv4-CSPDarknet53相比,改进算法在PASCAL VOC07+12数据集上训练出来的模型大小为47.19 M,约为原来的五分之一,FPS提升了40(f/s),mAP提升了2.4%.与YOLOv4-Tiny、YOLOv5s、YOLOv7等目标检测算法相比,具有兼顾检测速度与精度的特点.  相似文献   

2.
针对现有的无人机检测算法无法同时兼顾检测速度及检测精度的问题,本文提出了一种基于YOLOv5s(You Only Look Once)的轻量化无人机检测算法TDRD-YOLO(Tiny Drone Real-time Detection-YOLO).该算法首先以YOLOv5s的多尺度融合层和输出检测层分别作为颈部网络和头部网络,引入MobileNetv3轻量化网络对原骨干网络进行重构,并将骨干网络后的通道在原YOLOv5s的基础上进行压缩,减小网络模型大小;其次,将骨干网络中Bneck模块的注意力机制由SE修改为(Convolutional Block Attention Module,CBAM)并在颈部网络引入CBAM,使网络模型更加关注目标特征;最后修改颈部网络的激活函数为h-swish,进一步提高模型精度.实验结果表明:本文提出的TDRD-YOLO算法平均检测精度达到96.8%,与 YOLOv5s相比,参数量减小到原来的1/11,检测速度提升1.5倍,模型大小压缩到原来的1/8.5.实验验证了本文算法可在大幅降低模型大小、提升检测速度的同时保持良好的检测性能.  相似文献   

3.
针对个人防护用具安全帽的防护检测识别需求,现有的人工检测方法费时费力,无法做到实时监测.提出了一种基于YOLOv5s深度学习模型的安全帽检测算法,能够有效识别检测安全帽是否正确佩戴.并通过添加CA注意力机制,重新分配每个空间和通道的权重;以BoT3替代原有的C3模型,作为主干网络;并将CIOU损失函数改为SIOU等方法,改进原有的YOLOv5s模型,提高安全帽检测识别的精度,提高检测速度.实验结果表明,安全帽识别检测的平均精度比原始模型提高了2.2%,识别检测速度提升了19 ms,实现了更准确地轻量高效实时的安全帽佩戴检测.  相似文献   

4.
为提高轨面巡检的效率和精度,本文提出了一种基于YOLOv5算法的轨面缺陷检测算法.首先对YOLOv5的特征提取网络结构进行轻量化改进,并引入注意力机制对特征图的不同通道进行权衡.同时,针对轨面缺陷目标较小的情况修改了检测输出层结构.实验结果表明,算法在参数减少了1/3的基础上精确率提升了15.7%,达85.1%;检测速度提升了5 fps,达到了43.7 fps的实时检测速度.改进后的YOLOv5检测算法满足轨面缺陷精准检测和定位任务要求,为高速高精度的轨面检测提供了一定的理论基础,具有一定的工程应用价值.  相似文献   

5.
针对目前交通灯检测算法网络模型参数量过大、实时性差的问题,提出了一种基于改进YOLOv5s的轻量化交通灯检测算法.首先,用轻量化网络MobileNetv3替换原主干网络并引入注意力机制,在对检测精度影响不大的前提下降低模型参数量;然后,使用深度可分离卷积替换颈部网络中的传统标准卷积,进一步降低模型参数量;接着,针对交通灯尺度小的特点,删除检测大目标的检测层;最后,改进边框回归损失函数,提升边框检测精度.同时,为了能实时部署在嵌入式平台,该算法对网络进行通道剪枝实现模型压缩和加速.实验结果表明,该算法在嵌入式平台NVIDIA Jetson Xavier NX上能达到48.1帧/s的检测速度,相比原始YOLOv5s牺牲了1.5%的mAP,但是该模型体积压缩了54.3%,检测速度提高为原来的2.6倍,可以满足在交通道路中实时对交通灯检测的需要.  相似文献   

6.
针对密集场景下行人检测的目标重叠和尺寸偏小等问题,提出了基于改进YOLOv5的拥挤行人检测算法。在主干网络中嵌入坐标注意力机制,提高模型对目标的精准定位能力;在原算法三尺度检测的基础上增加浅层检测尺度,增强小尺寸目标的检测效果;将部分普通卷积替换为深度可分离卷积,在不影响模型精度的前提下减少模型的计算量和参数量;优化边界框回归损失函数,提升模型精度和加快收敛速度。实验结果表明,与原始的YOLOv5算法相比,改进后YOLOv5算法的平均精度均值提升了7.4个百分点,检测速度达到了56.1帧/s,可以满足密集场景下拥挤行人的实时检测需求。  相似文献   

7.
准确检测交通标志已成为自动驾驶不可或缺的任务之一。基于现实场景中小而密集的交通标志,传统方式检测交通标志存在精度较低这一缺陷。针对此问题,提出一种融合RepVGG模块的改进YOLOv5的交通标志识别算法。首先将原算法的部分CBS模块替换为RepVGG模块,加强特征提取能力。并在Neck层融合CBAM注意力机制,强化检测模型的抗干扰能力。最后,在网络训练过程中,使用EIOU损失函数来弥补GIOU损失函数的不足,提高算法的检测精度与迭代速度。实验结果表明,改进后的YOLOv5算法,迭代速度更快,在CCTSDB交通标志数据集上的P、R、mAP值分别达到91.55%、85.04%、91.71%,相比YOLOv5算法能够更好的应用到实践当中。  相似文献   

8.
针对铝型材表面缺陷不同类别尺寸差别较大,导致检测效果较差的情况,本文提出一种基于改进YOLOv5的铝型材表面缺陷检测算法。首先,在网络中嵌入CA(coordinate attention)注意力机制模块,使网络更好地抑制图像中无效样本的干扰,更多聚焦于有用信息;其次,在原有检测层上增加一个小目标检测层,获取和传递更为丰富且更具判别性的小目标特征,以解决对小目标缺陷检测精度低的问题,提高整体检测精度;最后,引入SIoU损失函数,用边界框回归之间的向量角度来重新定义损失函数,在有效减少总自由度损失的同时提高推理精度。将改进算法应用到天池铝型材数据集中进行验证,实验结果表明:该模型能有效识别铝型材表面不同种类的缺陷,较原YOLOv5算法mAP提高11.4个百分点,检测速度达到66.4 frame/s,能够满足目前铝型材工厂生产现场缺陷检测要求。  相似文献   

9.
针对传统YOLOv3(you only look once-v3)算法目标检测精度较低、收敛速度较慢等问题,提出了一种改进的YOLOv3算法,分别对主干网络和损失函数进行了改进。采用迁移和冻结相结合的训练方法,以提升目标检测的精确度和速度。基于改进的YOLOv3算法对西南某通航机场3种不同场景下的运动目标检测效果进行了对比分析。结果表明,改进的YOLOv3算法对正常天气场景下的场面运动目标检测效果要明显优于雾天和雨天场景,对飞机目标的检测效果明显优于车辆和行人目标;3类目标的检测精度、召回率、平均精度值(mean average precision,mAP)分别达到92.96%、80.51%、91.96%,GPU处理速度为74f/s,较传统YOLOv3算法和YOLOv4算法性能均有明显提升。  相似文献   

10.
为了解决YOLOv3算法在手势识别中存在识别精度低及易受光照条件影响的问题,提出了一种改进的YOLOv3手势识别算法。首先,在原来3个检测尺度上新增加1个更小的检测尺度,提高对小目标的检测能力;其次,以DIoU代替原来的均方差损失函数作为坐标误差损失函数,用改进后的Focal损失函数作为边界框置信度损失函数,目标分类损失函数以交叉熵作为损失函数。结果表明,将改进的YOLOv3手势识别算法用于手势检测中,mAP指标达到90.38%,较改进前提升了6.62%,FPS也提升了近2倍。采用改进的YOLOv3方法训练得到的新模型,识别手势精度更高,检测速度更快,整体识别效率大幅提升,平衡了简单样本和困难样本的损失权重,有效提高了模型的训练质量和泛化能力。  相似文献   

11.
根据以往钢铁表面缺陷检测技术的检测效能较低、准确性低的情况,提出一种改进YOLOv5s的钢材表面缺陷检测算法。主要改进为:加入坐标注意力机制(Coordinate Attention,CA)的空洞空间卷积池化金字塔 (Atrous Spatial Pyramid Pooling,ASPP),扩大模型感受野和多尺度感知能力的同时能更好的获取特征位置信息;加入改进的选择性内核注意力机制(Selective Kernel Attention,SK),使模型能更好的利用特征图中的频率信息,提升模型的表达能力;将损失函数替换为SIoU,提升模型性能的同时加快模型的收敛。实验数据表明,改进的YOLOv5s网络模型在NEU-DET数据集上的mAP值为78.13%,相比原网络模型提高了2.85%。改进的模型具有良好的检测型性能的同时检测速度为103.9 FPS,能够满足实际应用场景中钢材表面缺陷实时检测的需求。  相似文献   

12.
针对现有目标检测算法在自动驾驶等领域的车辆目标检测中存在检测精度不高,实时性和鲁棒性较差等问题,本文提出一种基于YOLOv5的车辆目标检测方法.本文在YOLOv5s网络模型框架下,引入一次性聚合(OSA)模块优化主干网络结构,提升网络特征提取能力;并采用非局部注意力机制进行特征增强;同时利用加权非极大值抑制方法实现检测框筛选.实验结果表明,在自制车辆检测数据集上,改进网络模型与原YOLOv5s模型相比,平均准确率均值(mAP)提升3%,不同目标类检测的平均准确率(AP)均得到提升,且检测速度满足实时性要求,对于密集车辆和不同光照条件下均能较好实现车辆目标检测.  相似文献   

13.
针对目前车位检测方法效率低的问题,提出一种轻量级车位检测方法OG-YOLOv5。首先,基于YOLOv5网络添加车位分隔线方位回归分支,实现车位方位的准确预测,可直接根据网络预测结果推断完整车位信息;其次,通过检测尺度裁剪、Ghost模块重构网络实现模型轻量化;再者,通过在网络主干中引入ECA注意力机制、优化损失函数提高目标预测精度。通过对比实验,结果表明所提OG-YOLOv5网络的mAP达到了98.8%,模型参数量和计算量仅为原模型的32.0%和28.3%,在GPU和CPU上的检测时间分别减少了16.2%和28.1%,车位检测准确率和召回率分别达到了97.75%和96.87%。  相似文献   

14.
针对O型密封圈缺陷难以人工识别的问题,提出一种基于改进YOLOv5的表面缺陷自动检测方法。在数据预处理阶段,采用半自动标注方法减少人工标注成本,同时将拼接图片改为9张以实现Mosaic数据增强方法。在网络预测层引入标签平滑方法以减少模型过度依赖标签。在骨干网络中添加卷积注意力机制模块,强化有效信息,使骨干网络提取更加细致的局部特征信息。同时,针对缺陷类型尺度变化大的特点,引入剪枝的双向特征金字塔网络,以解决大小缺陷在特征提取过程中的丢失问题。实验结果表明,基于改进的YOLOv5与原YOLOv5相比,O型圈表面缺陷检测平均精度均值提高了4.26%,并且检测速度在25 ms之内,能够满足实际生产需要。  相似文献   

15.
针对人工检测桥梁表面缺陷存在精度低、速度慢和漏检率高等问题,该文提出了基于深度卷积生成式对抗网络(deep convolutional generative adversarial networks,DCGAN)和改进YOLOv5s的桥梁表面缺陷检测识别模型.首先,通过DCGAN网络对自主采集的桥梁表面缺陷图像进行数据增强,建立每类缺陷样本数量较为均衡的数据集; 其次,在YOLOv5s模型基础上嵌入CBAM注意力机制模块,使模型将注意力集中于缺陷区域,从而提升图像分类的准确率; 最后,为验证所提方法的适用性,将包含4类桥梁表面缺陷的数据集进行训练与测试.实验结果表明:该文提出的模型在桥梁表面缺陷检测上的准确率为92%,相比其他深度学习模型具有更高的检测精度和鲁棒性.  相似文献   

16.
针对输电线路维护过程中的典型缺陷识别问题,为提高无人机(unmanned aerial vehicle, UAV)自主巡检的智能化程度,提出基于改进YOLOv4的无人机输电线关键部件实时检测模型。根据无人机视角下输电线典型目标的特点,结合MobileNet重新设计了一种轻量的特征提取网络来获取更高的特征提取效率,利用空洞模块增强感受野减少小目标的信息损失;在特征融合模块中添加自适应路径融合网络来融合更多的位置信息和语义信息,提高了多尺度目标的检测精度,减少了目标的误报率。采用构建的无人机输电线关键部件数据集来评估提出的模型。结果表明:基于YOLOv4改进的网络能够在无人机机载端实现实时多尺度目标检测,模型的平均准确率可达到92.76%,检测速度可达到32帧/秒,能够满足无人机嵌入式平台上实时检测的需求。  相似文献   

17.
翟娅娅  朱磊  张博 《科学技术与工程》2022,22(21):9207-9214
在远程水表读数自动识别系统中,为减少网络模型参数量,改善受雾化、抖动等干扰的水表复杂场景图像读数识别精度及半字识别问题,提出了一种基于改进YOLOv4网络的水表读数识别方法?该方法利用深度可分离卷积与引入压缩与激发(squeeze-and-excitation, SE)注意力机制的MobileNetv2瓶颈结构,分别替代YOLOv4网络原有的标准卷积和主干网络,并利用加权平均非极大值抑制算法改进预测输出头,形成了一种网络模型参数量明显降低但检测精度不下降的改进YOLOv4网络,同时有效改善了对水表读数“半字”识别的漏检和错检问题;最后基于字符边框定位的水表读数提取方法,实现“半字”准确提取问题?实验结果表明,本文方法与多种网络学习方法相比,模型参数量压缩14.4%以上,读数识别的准确率和召回率对普通场景水表图像分别提升了0.04%和0.05%以上,对受雾化、抖动等干扰的复杂场景水表图像分别提升了0.11%和0.37%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号