首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 470 毫秒
1.
采用直流和射频磁控溅射在Si(001)基片上制备Ag/FePt/C薄膜,并将其在不同温度下进行真空热处理,得到了具有高矫顽力的L10-FePt薄膜.利用X射线荧光(XRF)、X射线衍射(XRD)和振动样品磁强计(VSM)研究样品的成分、结构和磁性.结果表明,样品经400℃热处理后发生了无序—有序相转变,以Ag元素为底层可降低有序化温度,添加Ag和C可抑制晶粒生长.随着热处理温度的升高,FePt的晶粒尺寸和矫顽力逐渐增大,经600℃热处理后,样品中FePt的平均晶粒尺寸为14nm,垂直膜面和平行膜面的矫顽力分别为798.16kA/m和762.35kA/m.  相似文献   

2.
采用磁控溅射法在Si0001基片上制备了FePt薄膜,薄膜样品经过650℃热处理1 h.利用X射线衍射仪和振动样品磁强计对样品的结构和磁性进行了测量和分析.结果表明,样品经过650℃热处理后均形成了有序面心四方结构的L10-FePt相.当FePt薄膜厚度达到20 nm时,样品平行膜面和垂直膜面的矫顽力最大,分别是9.2和8.0 kOe.随着厚度的增加,样品平均晶粒度增大,平行膜面和垂直膜面的矫顽力均呈现减小趋势.  相似文献   

3.
在加热到400°C的MgO(001)单晶基片上,用磁控溅射法沉积了25 nm厚的FePt薄膜,在Ta=[500°C,800°C]温度范围进行5 h的热处理.用X射线衍射仪、振动样品磁强计和可外加磁场的磁力显微镜分析了薄膜的结构和磁性.结果表明,未经热处理的薄膜能够在MgO(001)单晶基片的诱导下实现(001)取向生长,但仍处于无序的A1相,呈软磁性.Ta=500°C,薄膜结构没有明显改变.Ta=600°C,FePt发生部分有序化,薄膜中A1相和L10相(有序相)共存,形成一种具有磁各向异性的特殊硬磁-软磁复合体.软磁相的磁性主要表现在沿平行于膜面方向施加磁场的磁化曲线中,但矫顽力可以达到10 kOe(1Oe=103/4πA m-1),硬磁相的磁性主要表现在沿垂直于膜面方向施加磁场的磁化曲线中,矫顽力却只有5kOe.这说明薄膜中硬磁相和软磁相之间存在强烈的交换耦合,形成了磁性弹簧.当Ta提高到700°C,薄膜基本完成有序化,磁化易轴彻底转向垂直于膜面的方向,矫顽力大于20 kOe.原子力显微镜和磁力显微镜观察表明,薄膜由岛状颗粒构成,在Ta=700°C时大部分颗粒内部形成多磁畴结构,在不太大的磁场作用下依靠畴壁移动和消失变为单磁畴,磁化反转过程应该主要依靠形核.  相似文献   

4.
用电子束沉积法在加热到100℃的MgO(001)基板上生长了50nm厚的FexPt100-x取向薄膜,原子比成分范围为x=[10,85].在500℃进行保温2h的原位热处理后,分析样品的结构及沿面内和垂直于薄膜方向施加磁场的磁性行为.结果表明,随着x的增加,易磁化轴的方向在沿平行于膜面方向和垂直于膜面方向之间反复变化,取决于内秉的磁晶各向异性与外秉的形状各向异性之间的竞争.当x=60时,由于薄膜发生不完全的A1→L10相转变,形成了A1软磁相与L10硬磁相的复合体,样品沿平行和垂直于膜面方向磁化的矫顽力都达到5kOe(1Oe=79.5775Am-1)以上.沿膜面方向磁化时,矫顽力高于软磁相的磁晶各向异性场,并且正负向磁化的剩余磁化强度明显不相等.采用三磁畴软磁相模型,结合硬磁/软磁交换耦合作用,对此进行了解释.这种硬磁/软磁复合材料适合于用来制作磁力显微镜的各向同性高矫顽力探针.  相似文献   

5.
退火温度对FePt薄膜物性的影响   总被引:2,自引:1,他引:1  
用直流磁控溅射方法和原位退火工艺在玻璃基片上制备了Fe48Pt52纳米薄膜.研究发现,退火温度对FePt膜的微结构和磁特性有很大的影响,退火可以减小颗粒间的磁相互作用,矫顽力随退火温度的升高先急剧增大后减小,600℃退火处理的FePt样品平行膜面方向的矫顽力略大于垂直方向,分别达到了684.4,580.9 kA/m;650℃退火处理的FePt样品在2个方向上都获得了巨大的矫顽力,最大值达到了986.8 kA/m.  相似文献   

6.
采用直流对靶磁控溅射方法生长了FePt/Ta多层膜.X射线衍射(XRD)分析表明[FePt(2.5.nm)/Ta(2.5 nm)]5样品经过650℃退火实现了从无序到有序的转变.磁测量表明当Ta层厚度为2.5 nm时,FePt的磁特性达到最好,矫顽力为543.4 kA·m-1,矩形比也达到最大(0.805 59).原子力显微图观察发现,650℃退火后的样品纳米晶粒分布比较均匀,粒径大约为10~20 nm.磁力显微图观察说明大量粒子取向一致.计算得到激活体积远大于晶粒体积的事实说明薄膜的磁化反转过程主要是由磁矩转动控制的.  相似文献   

7.
用磁控溅射法在Si(100)基片上沉积不同厚度的Co底层,在Co层上先用溶胶-凝胶(sol-gel)法旋涂原始溶液,再经H2还原获得FeCo/SiO_2薄膜,并用X射线衍射仪测试样品的晶体结构,由振动样品磁强计(VSM)表征薄膜的磁性质.结果表明:随着Co底层厚度的增大,FeCo的晶面取向由(110)逐渐转变为(200);当Co底层厚度为10nm时,I(200)/I(110)值最大,即FeCo(200)择优取向最强,同时薄膜平行膜面的饱和磁化强度最大,矫顽力最小,即Co厚度增加有利于改善薄膜的软磁特性.  相似文献   

8.
室温下,利用直流对靶磁控溅射设备制备了Ag(x)/Fe(35nm)/Ag(x)系列薄膜,x=1,2,3,4nm.利用扫描探针显微镜(SPM)观测了样品的表面形貌及磁畴结构,应用X射线衍射仪(XRD)分析了样品的晶体结构,通过振动样品磁强计(VSM)测量了样品的磁特性.研究表明,非磁性Ag层厚度对Ag/Fe/Ag系列薄膜的微结构和磁特性有很大的影响.SPM观测显示,随Ag层厚度增加磁畴尺寸呈现先减小后增加的趋势.VSM结果显示,矫顽力的变化与磁畴尺寸的变化趋势是一致的,x=3nm时,垂直膜面矫顽力达到最大.  相似文献   

9.
应用对靶磁控溅射法在玻璃基底上制备了Ti(t)/Co(54nm)/Ti(t)(t=5,10,15,20,25nm)纳米薄膜,研究了非磁性Ti层厚度对样品磁特性的影响.实验结果显示,Ti(5nm)/Co(54nm)/Ti(5nm)样品的垂直膜面矫顽力高达159kA·m-1.研究表明,如此高的矫顽力主要源于样品晶粒的磁晶各向异性.另外,非磁性Ti原子的扩散在一定程度上减小了磁性颗粒间的交换相互作用,导致出现大的矫顽力.  相似文献   

10.
[FePt/Ag]n多层颗粒膜的磁学性能及微观结构   总被引:1,自引:0,他引:1  
采用磁控溅射方法制备了一系列[FePt/Ag]n多层颗粒膜,经过退火处理,用原子力磁力显微镜和振动样品磁强计研究了其微观结构及磁学性能.研究结果表明:在FePt薄膜中加入适当含量的Ag有利于FePt在较低退火温度下发生有序化相变,但在FePt有序化相变完成之后,颗粒膜中的Ag原子的扩散阻碍薄膜矫顽力的进一步提高;[FePt/Ag]n颗粒膜的晶粒及其岛状磁畴的大小随着退火温度的升高而增大;溅射成膜过程中适当的基片加温有利于降低[FePt/Ag]n颗粒膜的后续退火处理温度.  相似文献   

11.
用FeAl合金作为下底层,用MgO作为中间层,在MgO(001)基片上生长了FePt薄膜.对FeAl下底层在300℃以上进行热处理,可以使其相结构转变为有序的B2相.热处理温度为400℃时,FeAl下底层内因热运动产生的空位没有在表面发生聚集,因而其表面最为平整.由于MgO,FeAl和FePt三者间良好的晶格匹配关系,使得FePt薄膜的生长具有垂直取向.FeAl下底层可以有效地降低FePt薄膜的相转变温度,而MgO中间层可以有效地避免层问扩散.在400℃的较低温度条件下,获得了尺寸约为10nrn的垂直取向L10相FePt均匀颗粒,室温矫顽力达到~20kOe.这种薄膜有希望应用于垂直磁记录介质.  相似文献   

12.
采用射频磁控溅射法在玻璃基片上制备了Nd(Tb,Dy)Co/Cr薄膜.X射线衍射仪分析结果表明溅射制得的Nd(Tb,Dy)Co薄膜为非晶结构.振动样品磁强计(VSM)测试结果显示NdTbCo薄膜垂直膜面方向矫顽力与剩磁矩形比分别达到308.8kA/m和0.732,而平行膜面方向矫顽力与剩磁矩形比分别仅为22.3kA/m和0.173,这表明NdTbCo薄膜具有垂直磁各向异性.随着Nd掺杂量的增加,Nd(Tb,Dy)Co薄膜的矫顽力逐渐降低,克尔旋转角与反射率则逐渐升高.(NdxTb1-x)31Co69的克尔旋转角和反射率分别从x=0的0.2720°,0.2616,上升到x=0.338的0.3258°,0.3320.(NdxDy1-x)33Co67的克尔旋转角和反射率分别从x=0.210的0.2761°,0.3054,上升到了x=0.321的0.3231°,0.3974.Nd掺杂量对克尔旋转角的影响可用Nd(Tb,Dy)Co的亚铁磁结构进行解释.  相似文献   

13.
目的研究应变对材料磁晶各向异性能的影响对于设计高密度磁存储材料至关重要。方法结合第一性原理全电子方法和转矩法,研究单层Fe,Co,Ni薄膜在Pt(001)面上的磁晶各向异性能随应变的变化。结果研究结果表明,应变对3种薄膜的磁晶各向异性能均有明显的调节作用。拉伸应变降低Fe/Pt(001)的垂直磁晶各向异性能,而压缩应变使其增加。Ni/Pt(001)具有比Fe/Pt(001)更大的垂直磁晶各向异性能。Ni/Pt(001)的磁晶各向异性能随拉伸应变增加而随压缩应变减少。不同的是,Co/Pt(001)的易磁化轴位于水平方向。其磁晶各向异性能随应变的变化与Fe/Pt(001)类似。结论以Fe/Pt(001)为例,通过分析磁晶各向异性能在二维布里源区的分布和能带结构,发现关键的电子态,即Fe原子的dxy和dx2-y2态,Fe/Pt(001)的磁晶各向异性能的变化主要是这些电子态随应变的变化引起的。本结果将为实验研究应变对磁晶各向异性能的影响提供理论依据。  相似文献   

14.
采用直流磁控溅射方法,以Ar/N2作为放电气体(N2/(Ar N2)=10%),在玻璃衬底上于不同溅射时间获得了γ′-Fe4N单相薄膜。利用X射线衍射(XRD)和超导量子干涉仪(SQUID)研究了溅射时间对薄膜的生长及磁性性能的影响。结果表明薄膜样品明显沿γ′-Fe4N(111)晶面择优取向进行生长,其(111)晶面平行于样品的膜面。随溅射时间的增加,薄膜样品的晶粒尺寸没有明显的变化,薄膜厚度和矫顽力随溅射时间的增加而显著增大。  相似文献   

15.
在加热的玻璃基板上,通过磁控溅射的方法沉积金属Ti作为下底层,然后沉积不同成分的Co1-x-Ptx(x=0,15%,26%,35%)磁性薄膜.利用振动样品磁强计(VSM)和X射线衍射技术(XRD)分析了薄膜的磁性能和晶体结构.结果表明Pt原子分数对Co-Pt晶格常数有重要影响,随着Pt原子分数的增加,Co晶格常数(a,c)增大,从而减小Co-Pt与下底层Ti在(00.2)晶面之间的错配度,有利于c轴取向垂直膜面排列,获得了较好的磁性能.引入Ti和SiO2共溅射制备下底层,研究发现随着SiO2体积分数的增加,Co-Pt薄膜的垂直磁性能得到改善.  相似文献   

16.
采用射频磁控溅射法在Si(111)基片上沉积了MnZn铁氧体薄膜,用X射线衍射仪(XRD)分析薄膜的物相结构,用振动样品磁强计(VSM)测量薄膜面内饱和磁化强度Ms和矫顽力Hc。结果表明:随着退火温度的升高,MnZn铁氧体薄膜的X射线衍射峰强度逐渐增强,且主峰逐渐由(311)峰变为(222)峰,沿(111)面取向生长明显。薄膜的饱和磁化强度和矫顽力均随着退火温度的升高而升高。  相似文献   

17.
用直流磁控溅射方法和原位退火工艺在玻璃基片上制备了FexPt100-x纳米颗粒膜.研究发现,Fe含量对FePt纳米颗粒膜的微结构和磁特性有很大的影响.矫顽力随Fe含量的增加而增大,当x=48时矫顽力Hc达到了1 040 kA/m,样品出现很好的有序化L10结构扫描探针显微镜(SPM)观察结果显示,所有样品具有横跨数个晶粒的粒状磁畴,Fe48Pt52的粗糙度Ra大约0.6 nm.  相似文献   

18.
应用Lorentz显微术观察了反应蒸镀的Co-CoO膜的磁畴结构。当垂直各向异性场H_k和磁化强度相对垂直取向比增加时,它的磁畴结构从典型的180°面内畴变成点状畴,后老是单轴垂直磁各向异性介质的一种典型特征。用VSM测量的OR的角度依赖性显示了垂直磁各向异性的Co-CoO膜中存在一定量的面内磁化强度分量。结合对矫顽力H_c,剩磁矫顽力H_(cr)和磁滞损耗W_h的角度依赖性测量结果进行分析,可以得出结论:这种垂直磁各向异性的Co-CoO膜的反磁化机理是磁矩的涡旋式(Curlingmode)非一致转动过程。  相似文献   

19.
采用多靶磁控溅射仪在室温和衬底温度为300 ℃的条件下制备Tb/Fe/Dy纳米多层膜,研究其磁性能和超磁致伸缩性能.结果表明该纳米多层膜较TbDyFe单层膜有更明显的垂直磁各向异性和更大的矫顽力.尽管纳米多层膜样品具有垂直各向异性,但仍具有超磁致伸缩性能.特别是衬底温度为300 ℃的纳米多层膜样品,具有Laves相结构的TbDyFe纳米晶体析出,使得低磁场下磁致伸缩性能有了显著的提高.  相似文献   

20.
采用直流磁控溅射技术在自然氧化的Si基片上生长厚度约为100nm的原始态FePt:Ag纳米复合薄膜,采用高压退火调控该薄膜的微结构和矫顽力。在873 K温度下,当退火压力从常压增加到0.6 GPa时,退火后所生成的L10-FePt薄膜的有序畴尺寸从d=19 nm减小到D=9 nm,FePt薄膜的晶粒尺寸从D=34 nm减小到D=13nm,且有序畴尺寸和晶粒尺寸分布的均匀性明显提高。随着退火压力的增加FePt:Ag薄膜的矫顽力降低,因此,高压退火可以用来调控FePt:Ag复合薄膜的矫顽力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号