首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
通过原位复合方法合成碳包覆MnO/石墨烯(C@MnO/GN)复合材料并探究其作为锂离子电池负极材料的电化学性能.扫描电子显微镜(SEM)以及透射电子显微镜(TEM)表征结果表明,MnO纳米颗粒(直径约为30~50nm)均匀分散在石墨烯片层上,且颗粒外面包裹一层厚度约为5nm的碳层.电化学测试结果表明该材料作为锂离子电池负极具有优异的倍率和循环性能.0.2和0.5A/g电流密度下,比容量分别为800和700mAh/g;10A/g电流密度下比容量仍能保持在372mAh/g;当电流密度调回0.5A/g时,其比容量仍能恢复到730mAh/g.该材料也表现出优异的循环性能,在5和10A/g电流密度下依次循环100圈,容量保持率几乎100%.  相似文献   

2.
为了实现硅纳米颗粒与一维碳纳米纤维的高效复合,提高硅材料作为锂离子电池负极的电化学性能,通过同轴静电纺丝法构造了硅碳复合结构(Si/C-C)的一维纳米纤维作为锂离子电池的负极材料.通过SEM、TEM、XRD和电化学性能测试对其结构、形貌、成分和电化学性能等进行分析.结果表明:Si/C-C纳米复合纤维的平均直径为500~700 nm,硅含量为22%~33%;在100 m A/g的电流密度下,经100圈循环后其可逆容量维持在1 000 m Ah/g,表现出较佳的循环稳定性和较高的可逆比容量.研究表明,一维复合纳米纤维电化学性能的提升主要归因于硅碳复合结构中一维纳米纤维为硅提供了保护层,一方面有效抑制了硅的体积膨胀,另一方面提升了硅的电子导电性并有效缩短了离子迁移路径.  相似文献   

3.
采用共沉淀法、液氮冷淬工艺和热处理技术制备了高容量钠离子电池SnSbCo/rGO负极复合材料。通过XRD、SEM、TEM、恒流充放电和交流阻抗等测试分析技术对该负极材料进行表征和电化学性能测试。结果表明,在100 mA/g的电流密度下,经50次充放电循环后电极的可逆容量保持在567 mAh/g。同等条件下,纯SnSbCo的电极比容量为456mAh/g。SnSbCo/rGO负极复合材料的电化学性能的改善主要是由于rGO在提高复合材料导电性的同时,缓冲了SnSbCo合金颗粒由于团聚产生的体积膨胀效应。  相似文献   

4.
相比于传统物理打浆式简易硅碳材料的复合,本工作利用自组装的方式让有机酸碳源材料与纳米硅粉进行内部结合,羧酸碳源保护层在抑制硅材料膨胀的同时,通过相互间串联起的网络增加导电性,得到稳定性更好的硅碳复合负极材料。该方法首先在纳米硅粉表面进行修饰,使其表面带上氨基,通过酰胺化反应,让柠檬酸与纳米硅键合。此外过量的碳源材料包附于外层,形成多个单纳米硅颗粒聚集的微米级多核卵壳型颗粒。这种结构使得该电极材料在电流密度500 mA/g下,经过600圈的长循环下具有1 073.4 mAh/g的比容量。在2 A/g的电流密度下,初始比容量为751.2 mAh/g,在300圈循环后比容量维持在573.0 mAh/g,容量保持率为76.3%。该实验工作为锂离子电池硅碳负极材料的合成提供了一种简单低成本的实用性合成思路。  相似文献   

5.
该文采用空气Mg_2Si的方法,在600℃反应10小时生成纳米多孔硅,然后在室温的条件下将合成的纳米硅与氧化石墨烯复合,经还原后得到Si/石墨烯复合材料.将合成Si/石墨烯复合材料作为锂离子负极材料研究其电化学性能.研究结果表明石墨烯的加入会使充放电比容量有所降低,但会使硅的循环稳定性增加.  相似文献   

6.
近年来,硅基类材料的高理论比容量使其在能源存储尤其锂离子电池电极材料的应用受到了广泛的关注。通过简单的高能球磨法制备了硅碳(Si/C)复合材料,同时对比了采用不同硅碳比例进行球磨后的复合材料的形貌及性能情况。球磨Si/C复合材料在作为锂离子电池负极时展现了较好的电化学性能,与碳的复合有效抑制了合金硅材料在充放电过程中由于体积膨胀导致的容量快速衰减,同时,碳硅的混合比例对其电化学性能也起到了较大的影响。通过简单一步球磨方法和调控硅碳比例制备高循环稳定性和高容量的改进方式为硅基类材料在锂离子电池中的实际应用拓展了更大的空间。  相似文献   

7.
以累托石为原料,通过镁热还原制备多孔单质硅,然后以葡萄糖为碳源进行热处理覆碳制备Si/C负极材料。采用XRD、BET、SEM、TG分析了镁热还原条件对材料结构的影响,利用电化学工作站和电池充放电测试系统考察了Si/C负极材料的电化学性能。研究表明,累托石镁热还原的多孔硅的孔容、平均孔径、硅含量对Si/C复合材料的电化学性能有重要影响。随着镁热还原过程中金属镁质量的增加,制备的Si/C负极材料的电化学性能先增加后降低,当累托石与金属镁质量比为1∶0. 4时,制备的复合材料电化学性能最佳,在电流密度为0. 1 A/g时,材料首圈比容量最高可达1 120 mAh/g,循环200圈比容量仍能保持555 mAh/g。  相似文献   

8.
采用间苯二酚-甲醛为碳源,三聚氰胺为氮源,以NaOH为蚀刻剂,成功合成氮掺杂碳包覆的蛋黄壳结构硅(Si@void@N-C)锂离子电池复合负极材料.对样品进行XRD、 SEM和X射线电子能谱,透射电子显微镜(TEM)和电化学测试等表征及测试.结果表明,成功合成了蛋黄壳结构的Si@void@N-C复合负极材料.同时,该复合材料具有优异的电化学性能,以0.1 A/g的电流密度进行充放电,首次容量可达1 282.3 mAh/g,经过100次循环后,其比容量仍高达994.2 mAh/g,其容量保持率为77.5%,表现出了良好的循环性能.Si@void@N-C材料中,氮掺杂的碳壳可以增加复合材料的导电性,同时,蛋黄壳结构可有效缓解硅的体积效应,有利于形成稳定的SEI膜,从而提高电池的循环稳定性.  相似文献   

9.
氧化亚硅因其高理论比容量和丰富自然资源被认为是下一代高比能量锂离子电池负极材料之一。然而,氧化亚硅在充放电过程中由于较大体积变化引起电极结构不稳定,造成性能的衰减。本研究提出一种碳包覆层–氧化亚硅–石墨烯的三明治结构,有效提高氧化亚硅负极材料在充放电过程的结构稳定性。石墨烯和碳包覆层构建出一个围绕氧化亚硅颗粒的三维电子传输网络,不仅提高材料的电极反应动力学过程,而且能均化材料表面的局部电流和电极反应程度,实现材料体积的均匀变化。此外,存在于氧化亚硅和石墨烯之间的硅–氧–碳键可以增强颗粒在石墨烯片层上的附着强度,防止氧化亚硅在嵌脱锂过程中从石墨烯上脱落。得益于上述结构优势的协同作用,碳/氧化亚硅@石墨烯材料表现出优异的循环稳定性,在0.1 C倍率下循环100圈后比容量为890 mAh/g,容量保持率为73.7%。另外,材料经历前35圈电流密度从0.1 C到5 C的逐步上升的充放电循环后恢复到0.1 C的低电流后,仍表现出886 mAh/g的可逆比容量,对应容量恢复率93.7%,表明材料的倍率性能优异。该研究提供一种提高高容量型锂/钠离子电池负极材料结构稳定性的新策略。  相似文献   

10.
以SiO为硅源,柠檬酸为碳源,通过高能球磨和高温热解制备了一种循环性能优异的锂离子电池SiO/C复合负极材料.采用X-射线衍射仪(XRD)、扫描电子显微镜(SEM)对复合材料的物相和形貌进行了表征.具有孔状结构的柠檬酸热解碳对纳米SiO不仅具有良好的包覆效果,也能有效缓冲电化学嵌脱锂过程中硅颗粒释放出来的体积变化.电化学性能测试表明,SiO/C复合负极材料电极循环100次后容量仍高达803.1mA.h/g,容量保持率为89%.  相似文献   

11.
由于以碳为负极材料的锂离子电池(LIBs)已很难满足高性能电子产品对高能量密度的需求,因此研究新的锂离子电池负极材料成为近年来主要的研究方向。在金属氧化物中,二氧化锡(SnO_2)以其较高的理论比容量(782 mAh/g)引起了广泛的关注。首先概述了SnO_2的不同形貌如纳米颗粒、纳米棒、纳米片、纳米微球等在锂离子电池方面的特性;然后阐述了通过掺杂或修饰改善其结构及电化学性能;最后展望了SnO_2基负极材料的纳米结构设计与改进在锂离子电池领域面临的挑战。  相似文献   

12.
采用石墨烯掺杂的Cu-有机骨架化合物(Cu-MOF)复合材料(Cu-MOF/r GO)作为锂离子电池负极材料,研究其电化学性能.结果表明:在充放电电流密度为50 m A/g时,充放电循环50次后,材料的放电比容量可达到520m Ah/g.同时该材料也显示出较好的倍率性能和较高的库仑效率.Cu-MOF/r GO是一种具有前景的锂离子电池负极材料.  相似文献   

13.
硅是一种具有应用前景的负极材料。为了解决在电化学循环过程中由于硅电极体积变化较大、导电性比较差而造成负极材料比容量迅速衰减及其循环性能不稳定的问题,本研究利用溶胶-凝胶法,经过镁热反应制得具有三明治结构的负极材料石墨烯-硅-石墨烯;通过实验研究发现负极材料G-Si-1:1具有较好的电化学性能,在电流密度为0.1 A/g时首次放电比容量为1150 m A·h·g~(-1),循环100周时放电比容量为534.2 m A·h·g~(-1)。负极材料石墨烯纳米片负载硅纳米颗粒的合成路线较为简单,并且具有较高的放电比容量和较好的循环性能,在未来具有较好的应用前景。  相似文献   

14.
锂离子电容器作为一种新型储能元件,兼具锂离子电池与双电层电容器的优点。颗粒状的Li_4Ti_5O_(12)(LTO)因其稳定的结构、良好的循环性能、较高的安全性能等优点,成为较理想的锂离子超级电容器(LIC)负极材料。但因其较差的导电性,使其在大电流充放电过程中容量衰减较快。为改善这一性能缺陷,在制备LTO过程中进行碳源掺入,导致制备的含碳颗粒状LTO具备优良的电子、离子电导率。为进一步改善LTO颗粒间的导电性,使用含SP/C、SP/G、SP/C/G的混合导电剂分别制成不同极片(记为LTO-C、LTO-G和LTO-GC)。在充放电过程中(电流密度为2~20 C),3种半电池LTO-G、LTO-C和LTO-GC的比容量分别是162 mAh/g~102 mAh/g、165 mAh/g~110 mAh/g和179 mAh/g~121 mAh/g。在大电流密度下LTO-GC较高的容量保持率说明GC改良的LTO颗粒立体导电网络对其倍率性能及电化学可逆性能的提高至关重要。  相似文献   

15.
碳基负极材料比容量低,无法满足高能量密度电池的需求.为了进一步寻找高容量长循环寿命的电池负极材料,采用水热反应法制备了自支撑CoMoO4负极,通过X射线衍射(XRD)和扫描电子显微镜(SEM)对材料的结构、形貌进行表征,利用循环伏安法和恒电流充/放电等技术对比研究了材料在锂/钠离子电池中的电化学性能.结果表明,CoMoO4负极在锂离子电池中的首次可逆比容量为1 403.6 mAh/g,首次库伦效率为146.5%,在100 mA/g电流密度下经50次循环后仍然高达793.6 mAh/g;而CoMoO4负极在钠离子电池中首次可逆比容量仅为314.2 mAh/g,但经50次循环后容量保持率仍有76.4 %.该自支撑负极无需导电剂和粘结剂,电极材料与泡沫镍结合力强,具有优异的循环稳定性.  相似文献   

16.
以晶硅太阳能电池生产过程中的晶硅切削废料为原料、以壳聚糖(Chitosan, CTS)为碳源,通过液相包裹和低温热解工艺制备了具有较大孔隙的硅/硬碳复合材料(Si@CTS).对比研究了Si@CTS及Si@CTS混合石墨后(Si@CTS/G)分别作为锂离子电池负极的电化学性能.结果表明,具有孔隙和互联结构的Si@CTS负极首次放电比容量可达到1 672.8 mAh/g,首次库伦效率达到了84.45%;在循环100圈之后Si@CTS放电比容量保持在626.4 mAh/g.进一步,将Si@CTS作为高容量活性物质添加至石墨中,研磨混合后制得的Si@CTS/G复合负极表现出良好的稳定性,在循环100圈之后放电比容量为698.1 mAh/g,对高容量高稳定性硅碳负极批量化生产和应用具有重要意义.  相似文献   

17.
利用气相沉积技术,制备了SixCy层和C层相间的硅碳复合薄膜材料。XRD测试和Raman光谱测试表明,该硅碳复合薄膜材料具有纳米微晶结构。电化学性能测试表明,该SixCy/C复合薄膜材料,具有较低的充放电平台(0·5V以下),对应的首次放电容量达1200mAh/g以上,经过200次循环,容量保持率高于85%。SixCy/C复合薄膜材料性能的改善,主要原因可能源于活性材料Si中的缓冲骨架以及碳的共同作用,它们的存在改善了复合材料的导电性能,也有效缓冲了在充放电过程中活性组分Si所导致的体积变化。  相似文献   

18.
以氧化铁为铁源,通过简单的固相碳热法制备LiFePO4-MWCNTs复合正极粉体材料.利用XRD和SEM表征LiFePO4-MWCNTs复合材料的结构和表面形貌.利用EIS、CV和充放电测试实验测量LiFePO4-MWCNTs复合材料的电化学性能.XRD结果显示复合材料为橄榄石型的磷酸铁锂纯相,多壁碳管在正极材料中将颗粒相连,增加导电面积,形成三维网络结构,为颗粒之间提供附加的导电通道.通过添加质量分数为5%的多壁碳管的方法对LiFePO4正极材料导电通道进行改善.在0.5C充放电速率下首次放电比容量可以达到151.6mAh/g,充放电50次后,放电比容量还能保持在145.5mAh/g,在1C充放电速率下比容量保持在140mAh/g,2C时比容量保持在130mAh/g.随着充放电速率的增加,锂离子电池的性能也更加优越.  相似文献   

19.
介绍了一种将石墨烯(Graphite)引入锂离子电池正极材料磷酸铁锂(LiFePO_4)中获得LiFePO_4/graphite复合材料的制备方法。首先以碳酸锂、草酸亚铁、磷酸氢二铵和葡萄糖为原材料,采用高温固相法合成了碳包覆的LiFePO_4前躯体,再通过固相粉体混合的工艺加入不同百分比的石墨烯,制备出磷酸铁/石墨烯锂离子电池正极复合材料;对所制备的复合材料组装成纽扣电池进行性能测试;结果表明:复合材料的电化学性能显著提高,在0.1C放电倍率条件下,LiFePO_4+1wt%graphite复合材料的首次放电容量从LiFePO_4基体材料的131.75mAh/g提高到146.51mAh/g,LiFePO_4+1wt%graphite复合材料的充电性能和放电性能分别提高了5.8%和4.8%。  相似文献   

20.
侧重于Ti3C2TX MXene&硅(Si)三明治结构负极在硅基锂离子电池中的应用研究,发现通过真空抽滤法制备的Ti3C2TX MXene&Si复合负极可以有效抑制硅材料在充放电过程中的体积膨胀,优化其循环稳定性.X射线衍射和扫描电镜的结果表明,MXene与硅微米颗粒成功形成三明治(夹层)结构.组装成扣式电池测试其电化学性能,发现Ti3C2TX MXene&Si复合负极表现出优异于硅颗粒单体的充放电容量和循环寿命,这项研究为硅负极电池的商业化提升提供了一定的科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号