首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
硅基材料具有较高的储锂比容量,是最具潜力的下一代锂离子电池负极材料之一。然而,硅负极在充放电过程中巨大的体积效应以及较低的电导率限制了其商业化应用。目前,提高硅负极性能的措施主要包括:材料纳米化、复合化以及结构特殊化等。本文报告了近年来硅基材料作为锂离子电池负极材料在纳米化、复合化及结构特殊化等研究领域的最新研究进展,并展望了硅基材料作为锂离子电池负极材料的发展前景。  相似文献   

2.
 作为一种N型半导体,二氧化锡基负极材料由于其拥有较高的理论比容量(782 mA·h·g-1)、高能量密度等优势受到了广泛关注。然而,由于二氧化锡负极材料在充放电过程中的体积效应和本身导电性较差等导致的其循环性能和倍率性能较差,从而制约了其作为锂离子电池负极材料的应用。本文从二氧化锡的纳米化及复合化(包括其与金属氧化物、无定型碳、碳纳米管和石墨烯等复合)2 方面综述了二氧化锡基锂离子电池负极材料的研究进展,同时对SnO2基锂离子电池负极材料的发展方向进行了展望。  相似文献   

3.
铁氧化物锂离子电池负极材料具有比容量高、资源丰富、价格便宜和环境友好等优势,是目前高容量负极材料的研究热点之一.然而,铁氧化物负极材料巨大的体积效应、较差的循环性能以及大的首次可逆容量损失,影响了其在锂离子电池中的应用.目前研究最多的铁氧化物负极材料是α-Fe2O3和Fe3O4,理论容量分别为1007 mA·h·g-1和924 mA·h·g-1.关于其电化学性能的改进方法,包括制备不同形貌与尺寸的纳米结构材料以及铁氧化物/碳纳米复合材料.介绍了铁氧化物锂离子电池负极材料的储锂机理及其存在的问题,综述了各类铁氧化物负极材料的制备方法、影响因素及电化学性能,并对铁氧化物负极材料的进一步研究、发展应用予以展望.  相似文献   

4.
高能量密度、快速充放电能力以及长循环使用寿命的新型电极材料的开发是锂离子电池应用领域面临的一个重大的课题。本文以SnCl_4·5H_2O、ZnCl_2与氧化石墨烯(RGO)为原料,以N_2H_4·H_2O为矿化剂与还原剂,聚乙烯醇(PEG)作为分散剂,通过一步水热法合成了Zn_2SnO_4/RGO复合材料。利用X射线衍射仪(XRD)、透射电镜(TEM)对Zn_2SnO_4/RGO复合材料的结构与形貌进行了表征,结果表明:Zn_2SnO_4纳米颗粒均匀的负载在还原氧化石墨烯(RGO)片层上,形成良好的导电网络;Zn_2SnO_4/RGO在100mA/g电流密度下循环80周后的可逆比容量仍有810(mA·h)/g,而Zn2SO4空白样品在相同的电流密度下可逆比电容量小得多;石墨烯的引入阻止了Zn_2SnO_4纳米颗粒的团聚,同时也提高了Zn_2SnO_4/RGO复合材料的导电性,使其在锂离子电池的应用方面具有广阔前景。  相似文献   

5.
以(NH_4)_6Mo_7O_(24)·4H_2O为钼源,以Sn_Cl_2·2H_2O为锡源,采用简单的溶剂热法经低温退火合成SnO_2-MoO_3前驱体;再进一步与硫氰化钾水热反应经低温煅烧即可得到Sn/MoS_2复合物.通过XRD,SEM等对合成材料的结构和形貌进行表征,采用恒流充、放电系统对合成材料的电化学性能进行了测试.结果表明:所合成的纯MoS_2纳米结构在作为锂离子电池负极材料时,具有较高的初始放电容量,但循环性能较差.所制得的Sn/MoS_2复合材料,大大改善了MoS_2的循环性能.当电流密度为100 m A·g~(-1)时,在0. 01 3. 0 V的电压窗口下循环70次后,Sn/MoS_2复合物的放电容量可以保持在725 m Ah·g~(-1),具有较高的可逆比容量和优良的循环性能,为研究高比容量和循环性能稳定的新型锂离子电池负极材料提供了实践依据.  相似文献   

6.
采用溶剂热法合成锂离子电池负极材料纳米Ni3Sn2合金粉末并研究了该合金粉末作为新型锂离子二次电池负极材料的电化学性能。合成的合金粉末经过了XRD和FESEM的表征,采用Li/LiPF6(EC DMC)/Ni3Sn2模拟电池测定合成的合金粉末的电化学性能。研究表明,该合金粉末的首次可逆容量为136mAh.g-1,退火后的合金粉末表现出更好的循环稳定性。  相似文献   

7.
分别使用十二烷基苯磺酸钠(SDBS)作为表面活性剂以及十二烷基苯磺酸钠(SDBS)和聚乙烯吡咯烷酮(PVP)作为双表面活性剂,采用水解法制备出SnO_2纳米材料,并研究了SnO_2纳米材料的形貌和作为锂离子电池负极时的电化学性能之间的关系.结果表明,所制备的SnO_2纳米颗粒均为球形,大小为45~75 nm,在双表面活性剂的调控下所制备的SnO_2纳米材料体积较大.所制备的SnO_2纳米颗粒均为具有金红石结构的锡石型,属于四方晶系.恒电流充放电循环测试结果表明,SnO_2纳米颗粒具有较高的放电比容量,首次放电比容量大约为1400~1600 m Ah/g,但是循环稳定性较差,循环5次以后样品的放电比容量衰减至400~700 m Ah/g.总之,双表面活性剂调控下,7h煅烧制备得到的SnO_2纳米材料相对较好,具有相对较大的比容量和相对较小的阻抗.  相似文献   

8.
为了提高锂离子电池锡基负极材料的比容量,以SnCl_4·5H_2O和石墨烯为原料,通过气相沉积法和高温烧结制备了SnO_2/石墨烯复合材料,并研究了不同烧结温度对SnO_2/石墨烯复合材料电化学性能的影响. SnO_2颗粒沉积并嵌入在石墨烯的层间,石墨烯的层状结构能够缓冲SnO_2的体积膨胀,进而有效提高材料的循环稳定性.利用电子扫描显微镜、X线能谱和X线衍射等表征方法和循环伏安等电化学性能测试方法对材料进行表征和分析.结果表明:当烧结温度为400℃时,材料的电化学性能最好,在电流密度为100 mA/g时,充放电循环50周后,其放电比容量仍能保持在716.6 mA·h/g;在电流密度为1 A/g时,放电比容量为431.9 mA·h/g.因此,该材料在商用锂离子电池领域具有潜在的应用前景.  相似文献   

9.
尽管各种各样的CuO纳米结构已被广泛应用于锂离子电池负极材料的研究,但将CuO微米梭作为锂离子电池负极材料却鲜有报道. 运用简单的溶剂热法制备大量的CuO微米梭,并用作锂离子电池负极材料. 实验表明,CuO微米梭在电流密度为100 mA g-1下充放电循环100次后,放电容量依然保持在484 mAh g-1. CuO微米梭优异的电化学性能归功于其独特的梭形结构. 这种结构在锂离子电池充放电过程中可以缩短锂离子和电子的传输距离,缓解体积膨胀效应.  相似文献   

10.
采用溶剂热法合成锂离子电池负极材料纳米M3Sn2合金粉末并研究了该合金粉末作为新型锂离子二次电池负极材料的电化学性能。合成的合金粉末经过了XRD和FESEM的表征,采用Li/LiPF6(EC+DMC)/Ni3Sn2模拟电池测定合成的合金粉末的电化学性能。研究表明,该合金粉末的首次可逆容量为136mAh·g^-1,退火后的合金粉末表现出更好的循环稳定性。  相似文献   

11.
All-solid-state lithium-ion batteries are lithiumion batteries with solid-state electrolytes instead of liquid electrolytes.They are hopeful in solving the safety problems of lithium-ion batteries,once their large capacity and long life are achieved,they will have broad application prospects in the field of electric vehicles and large-scale energy storage.The working potential window of solid electrolytes is wider than that of liquid electrolytes,so high-voltage cathode materials could be used in all-solidstate lithium-ion batteries to get higher energy density and larger capacity by elevating the working voltage of the batteries.The spinel LiNi0.5Mn1.5O4material,layered Li–Ni–Co–Mn–O cathode materials and lithium-rich cathode materials can be expected to be applied to all-solid-state lithium-ion batteries as cathode materials due to their highvoltage platforms.In this review,the electrochemical properties and structures of spinel LiNi0.5Mn1.5O4material,layered Li–Ni–Co–Mn–O cathode materials and lithiumrich cathode materials are introduced.More attentions are paid on recent research progress of conductivity and interface stability of these materials,in order to improve their compatibility with solid electrolytes as cathode materials in all-solid-state lithium-ion batteries and fully improve the properties of all-solid-state batteries.Finally,the existing problems of their application in all-solid-state lithium-ion batteries are summarized,the main research directions are put forward and their application prospects in all-solid-state lithium-ion batteries are discussed.  相似文献   

12.
Sn anode materials with high specific capacity are an appealing alternative to graphite for next-generation advanced lithium-ion batteries. However, poor electrochemical performance originating from fracture and pulverization due to the enormous volume changes during lithium alloying/dealloying hinders their commercial applications. Here, we propose the synthesis of a novel 3D structured Sn anode material by a facile method: heat treatment of nanosized SnO2 spheres in a tube furnace with a flowing mixed atmosphere of C2H2/Ar at 400 °C. After the heat treatment, the nanosized SnO2 spheres convert into pure Sn bulk material (~20 μm), which consists of Sn nanowires (~50 nm in diameter and several microns in length). This unique 3D structure with sufficient voids between the nanowires effectively mitigates the volume expansion of Sn bulk material and ensures good electrical contact between the anode material and conducting additives. As a consequence, the 3D structured Sn anode material exhibits a specific reversible capacity of ~600 mA h/g and no significant capacity degradation (compared with that of the 20th cycle) over 500 cycles at 0.2 C.  相似文献   

13.
近年来,锂离子电池被广泛地应用于便携式电子设备和手机,并且对于诸如电动汽车等更高要求的应用而言具有巨大的潜力。作为锂离子电池负极材料,Fe2O3是最有可能替代石墨的过渡金属氧化物之一。因其具有高的理论比容量(1 007 mA·h·g-1)、储量丰富、安全性能好、无毒、环境友好和成本低等一系列优点,被广泛应用于气体传感器、催化和锂离子电池电极材料等领域,是一种具有巨大潜力的电极材料。介绍了锂离子电池的基本结构组成和工作原理,综述了Fe2O3的储锂机制和制备方法,总结了近年来Fe2O3以及它的复合物作为锂离子电池负极材料的研究进展。  相似文献   

14.
硅基负极材料由于其具有高容量而被广泛研究,该材料在充/放电过程中巨大的体积变化、低的循环寿命和初始库仑效率阻碍了其商业化应用. 本文分析了硅基负极材料的工作原理,回顾了其在脱/嵌锂过程中的晶体结构、表面/界面的变化以及提高其电化学性能的方法,讨论了锂离子电池硅基负极材料的前景.  相似文献   

15.
A facile high-energy ball-milling method was developed to synthesize SnS_2-carbon(SnS_2/C-x(x = 40, 50, 60 wt%)) nanocomposites. The results showed that as anode materials for lithium-ion batteries(LIBs), the SnS_2-C nanocomposites exhibited high discharge capacity and excellent cycling stability. For the optimized SnS_2/C-50 wt% nanocomposite, a discharge capacity as high as 700 mA h g~(-1) and the initial coulombic efficiency of 80.8% were achieved at a current density of 100 mA g~(-1). The unique structure with SnS_2 nanoparticles(NPs)embedded into carbon network provided abundant Li-ion storage sites, high electronic conductivity and fast ion diffusion. The ball-milled synthesis is applicable for large-scale preparation of new sulfide-based anode materials with good performance for LIBs.  相似文献   

16.
One popular study of the recent research is to develop the cathode materials for lithium-ion batteries. As a new cathode material for lithium-ion batteries, the LiNil/3Col/3Mnl/3O2 has drawn widespread attention because of its high capacity, high cut-off voltage and high tap density. Its theoretical capacity is 277.8 mAh/g. The crystal structure of LiNil/3Col/3Mnl/3O2 is α-NaFeO 2 . The structural and morphological features of the LiNil/3Col/3Mnl/3O2 are introduced in this paper. The emphasis is to present the methods for promoting electrochemical properties. The electrochemical properties and structure characteristics are discussed. And the prospect of layered LiNil/3Col/3Mnl/3O2 is forecast in the end.  相似文献   

17.
综述了近几年来基于Li2MnO3的高比容量二元和三元富锂类锂离子电池正极材料的研究进展.重点讨论了富锂材料zLi2MnO3.(1-z)LiMO2(0相似文献   

18.
Nickel-rich and cobalt-free cathode materials have obvious advantages in the aspects of energy density and economic efficiency. However, these materials are restricted from being used in commercial lithium-ion batteries due to the problems of poor structural stability and rate capability. In this study, the aluminum and zirconium dual-doped Co-free Ni-rich LiNi0.96Mn0.04O2cathode material(NMAZ) is prepared by a facile high-temperature solid-phase method. The obta...  相似文献   

19.
Lithium-ion batteries have long been used in electronic products and electric vehicles, but their energy density is slowly failing to keep up with demand. Because of its extraordinarily high theoretical specific capacity, silicon is regarded as the most potential next-generation anode material for practical lithium-ion batteries. However, its unavoidable volume expansion issue can cause electrode deformation and loss of electrical contact during cycling,resulting in significant performance reduc...  相似文献   

20.
To promote substantially the performances of red phosphorous (P) anode for lithium and sodium-ion batteries, a simple plasma assisted milling (P-milling) method was used to in-situ synthesize SeP2/C composite. The results showed that the amorphous SeP2/C composite exhibits the excellent lithium and sodium storage performances duo to the small nano-granules size and complete combination of selenium (Se) and phosphorous (P) to generate Se–P alloy phase. It was observed that inside the granules of SeP2/C composite the nanometer size of the SeP2 particles ensured the fast kinetics for Li+ and Na+ ​transfer, and the amorphous carbon wrapping the SeP2 particles relieved volume expansion during lithium/sodium storage processes and enhances electric conductivity. Therefore, the SeP2/C electrode retained reversible capacities of 700 ​mA ​h ​g−1 at 2 ​A ​g−1 after 500 cycles and 400 ​mA ​h ​g−1 at 0.5 ​A ​g−1 after 400 cycles as anode for LIBs and SIBs, respectively. The result proves that the amorphous SeP2/C composite can be a new type of anode material with great potential for lithium and sodium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号