首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
采用点电荷晶场理论模型,通过对Ce1-xYxPt2Si2(x=0.2,0.55,0.9)磁化率倒数—温度曲线的模拟,得到了其晶场分裂能和相应波函数,计算表明:晶场分裂能随x的增大而减小,晶场作用使得Ce3+六重简并基态分裂得到混合的双基态.  相似文献   

2.
建立了保健食品中人参皂甙Rh2高效液相色谱(HPLC)测定方法.用C18色谱分析柱;乙腈-水(1:1)为流动相;紫外检测器:波长203 mn,外标法定量.结果表明在0.1-5μg范围内,Rh2线性关系良好,相关系数r=0.999 96,平均回收率为99.5%,相对标准偏差(RSD)为1.94%,检出限为2.5 ng.方法简便、快速、可靠,可作为保健食品中Rh2质量控制检测.  相似文献   

3.
以Ge3 掺杂TiO2溶胶制备自清洁玻璃,并研究Ce3 掺杂量在紫外光照射条件下对甲苯分解能力的影响.AFM照片显示:Ce3 掺杂纳米TiO2自清洁玻璃表面膜是由平均粒径30nm的TiO2颗粒组成的,膜厚度为53nm.光催化研究表明:Ce3 掺杂纳米TiO2自清洁玻璃在紫外光条件下,具有良好的光催化效果,其甲苯分解率都在90%以上,分解时间小于120min.在质量浓度为50μg/mL的甲苯溶液中,波长为365nm紫外光照射条件下,Ce3 与TiO2摩尔比为0.02时,玻璃表面对甲苯的降解率为92.85%;Ce3 掺杂纳米TiO2自清洁玻璃膜对甲苯的光催化分解能力随的Ce3 质量分数的增加而有一最佳值98.5%,其Ce3 /TiO2摩尔比等于0.06;甲苯溶液浓度越高,自清洁玻璃表面对甲苯的分解效率越低;自清洁玻璃表面与甲苯体积比越大,分解甲苯的效率就越高.  相似文献   

4.
采用高温熔融法制备了掺Tb3+硅酸盐闪烁玻璃,并加入多种具有敏化功能的稀土离子(Ce3+/Ce4+,Dy3+),通过测量样品的激发光谱和发射光谱研究各种稀土离子对Tb3+发光性能的影响.结果表明:Tb3+掺杂浓度过高时会出现浓度淬灭现象,Tb3+质量分数为10%的样品发光强度最大.空气气氛下熔制的玻璃中同时含有Ce3+和Ce4+,由于Ce4+离子与Tb3+离子存在对能量的竞争吸收,使Tb3+的发光强度减弱.加入适量的Dy3+离子可以敏化Tb3+离子的发光.  相似文献   

5.
采用基于密度泛函理论(DFT)超单胞模型方法和基于波函数的镶嵌团簇方法,计算研究了Ce3+掺杂YAlO3晶体的结构性质和4f→5d跃迁.DFT计算结果表明,Ce3+替代Y3+离子引起掺杂格位周围局域结构各向异性畸变.基于DFT优化超单胞结构,构造以Ce3+为中心镶嵌团簇,通过基于波函数的CASSCF/CASPT2/SO方法计算获得Ce3+4f1和5d1组态分裂能级能量,得到的4f→5d跃迁能量与实验结果符合相当好.5d1能态的Mulliken自旋布居分析结果表明,5d1能级性质与立方晶场作用结果明显不同,从而证实了先前基于半经验分子轨道计算得出的结论.最后,5d1能级波函数分析结果表明,自旋-轨道耦合效应对于Ce3+5d1组态较低能级分裂比较重要.  相似文献   

6.
以Ce0 .8Zr0 .2 O2 复合氧化物为载体 ,采用共浸渍法配制了一系列PdO CuO/Ce0 .8Zr0 .2 O2 双组分催化剂 ,选择NO CO反应为模型反应 ,考察了催化剂的还原活性 .结果表明 ,不同配比的PdO CuO双组分催化剂的NO还原活性均要优于单组分的PdO和CuO催化剂  相似文献   

7.
Ce_(1-x)Dy_xO_(2-δ)固体电解质的合成及其性能研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法合成Ce1-xDyxO2-δ(x=0.05~0.50)固溶体,通过X射线衍射、拉曼光谱、原子力显微镜对样品进行结构表征,利用交流阻抗谱测试其电性能.结果表明:掺入Dy3+可提高Ce1-xDyxO2-δ的电导率,其中Ce0.9Dy0.1O2-δ的电导率最高,活化能最小,600℃时的电导率为5.50×10-3S.cm-1,活化能为0.85 eV,比纯CeO2的电导率提高了3个数量级.  相似文献   

8.
基于晶场理论,通过对Chen测量的稀土化合物RPt2In2(R=Ce,Pr,Nd)磁化率倒数-温度曲线的模拟,得到了RPt2In2的晶场系数、分裂能和相应波函数,计算结果与实验吻合较好.计算表明:Kramers离子Ce3 和Nd3 在晶场效应的作用下基态简并部分消除得到了双基态,而非Kramers离子Pr3 基态分裂后得到了单基态.  相似文献   

9.
对Ca8Mg(SiO4)4Cl2:Ce3 ,Eu2 系列荧光粉进行合成与测试,探讨Ca8Mg(SiO4)4Cl2:Ce3 ,Eu2 中Ce3和Eu2 之间的相互作用,初步判断Ca8Mg(SiO4)4Cl2:Ce3 ,Eu2 中Ce3 →Eu2 的能量传递主要是电偶极-偶极相互作用的结果.  相似文献   

10.
运用超临界CO2萃取技术从人参总次苷中萃取人参皂苷Rh1、人参皂苷Rh2。以不同溶剂为夹带剂,采用超临界CO2对人参皂苷Rh1、人参皂苷Rh2的萃取进行研究。通过高效液相色谱测定产物得率。在萃取压力为30MPa、温度45℃、时间3h、乙酸乙酯为夹带剂(10mL乙酸乙酯作为固态夹带剂,290mL乙酸乙酯作为动态夹带剂)条件下,超临界CO2萃取出人参皂苷Rh1、人参皂苷Rh2。人参皂苷的得率随加入的乙酸乙酯量的增大先增大后基本不变,随萃取压力、萃取温度的升高先增大后减小。在此最佳条件下,人参皂苷Rh1和人参皂苷Rh2的得率分别为7.33%和14.69%。  相似文献   

11.
通过对磁化率的模拟,研究了晶场效应对Ce2CuxNi1-xGe6磁性的影响,得到了该系列化合物的分裂能和相应波函数.计算表明,Ce3 六重基态在晶场作用下分裂为混合的双基态,其晶场分裂能随X的增大而变大.Cu含量的增加引起了更加复杂的f电子和传导电子的杂化,低温区域的电子—磁子近藤散射变得更加强烈.  相似文献   

12.
利用表面活性剂乳液自组装产生模板,以磺基水杨酸为掺杂剂,苯胺(ANI)为油相,稀土(Ce-Pr)离子水溶液为水相,形成反胶束微乳液,使稀土粒子均匀分散于油相中,成为热力学稳定的乳液体系,将该乳液插层于有机蒙脱土(MMT)的片层间,加入引发剂单体直接进行原位聚合,即制得目标产物.通过红外光谱(IR)、扫描电镜(SEM)、X-射线衍射(XRD)和差热-热重(TG-DTA)对该复合材料进行了表征和分析.结果表明,反胶束法制备出热稳定性良好的新型PANI/Ce(OH)3-Pr2O3/MMT纳米复合材料,该法可以用于三相纳米复合材料的制备.  相似文献   

13.
首次利用一种新方法(反胶束模板-原位聚合一步法)成功合成了聚甲基丙烯酸甲酯/Ce(OH)3-Pr2O3/石墨纳米微片复合材料.膨胀石墨在乙醇-水溶液中经超声处理制得石墨纳米微片,以甲基丙烯酸甲酯(MMA)为油相,稀土金属离子Pr3 ,Ce3 水溶液为水相,表面活性剂十六烷基三甲基溴化铵(TCAB)自组装形成的反胶束为模板,制备了PMMA/Ce(OH)3-Pr2O3/NanoG纳米复合材料.产物用CHCl3分散,涂于载玻片上,制得纳米复合材料薄膜.并用扫描电镜(SEM)、透射电镜(TEM)和差热-热重(TG-DTA)对该复合材料进行了表征和分析.  相似文献   

14.
研究了热压莫来石/Ce-TZP和莫来石/Ce-TZP/Al2O3复合材料。以ZTM为基质,使用不同的复合比例,加入Ce-TZP和Ce-TZP/Al2O3,测定了材料的力学性能及物相组成,以期得到一种较为稳定的高性能复合材料。  相似文献   

15.
在硝酸介质中,罗丹明6G可大大增敏Ce(SO4)2氧化左羟丙哌嗪产生的化学发光,据此采用流动注射技术,建立了Ce(IV)-罗丹明6G-左羟丙哌嗪化学发光体系测定左羟丙哌嗪的化学发光新方法。在优化的实验条件下,该法测定左羟丙哌嗪的检出限为4.9×10-7g/L,线性范围为0.8~80mL,对5ug/mL左羟丙哌嗪进行了11次平行测定,其RSD为3.8%。  相似文献   

16.
利用表面活性剂乳液自组装产生模板,以磺基水杨酸为掺杂剂,苯胺(ANI)为油相,稀土(Ce-Pr)离子水溶液为水相,形成反胶束微乳液,使稀土粒子均匀分散于油相中,成为热力学稳定的乳液体系,将该乳液插层于有机蒙脱土(MMT)的片层间,加入引发剂单体直接进行原位聚合,即制得目标产物.通过红外光谱(IR)、扫描电镜(SEM)、X-射线衍射(XRD)和差热-热重(TG-DTA)对该复合材料进行了表征和分析.结果表明,反胶束法制备出热稳定性良好的新型PANI/Ce(OH)3-Pr2O3/MMT纳米复合材料,该法可以用于三相纳米复合材料的制备.  相似文献   

17.
采用溶胶-凝胶法,在空气环境中合成了蓝白色Sr2SiO4:Ce3+荧光材料,合成温度为900℃,这远低于田相法制备同类硅酸盐材料所需温度.X射线衍射图表明,所得样品主要为纯相Sr2SiO4晶体.由扫描电子显微镜图像可知,样品一次颗粒尺度在2 μm以下.处于254 nm紫外光激发下,样品发射光谱为峰值位于472 nm的不对称单峰宽带谱,是典型的蓝白光发射.监测472 nm发射峰,得到其激发谱为近紫外连续光谱峰值位于272 nm,321 nm.通过改变Ce3+浓度,进一步研究了参杂浓度对发光强度的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号