首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two composites LaNi4.8Sn0.2/CNTs and NdNi4.8Sn0.2/CNTs were prepared by an impregnation-reduction method. Their hydrogen storage capacity could reach up to 2.96 wt% and 2.88 wt% respectively at room temperature and 1.0 MPa pressure. These values, which might result from the synergetic effect between the alloy nanoparticles and the pretreated CNTs, were three times higher than those of the unsupported MNi4.8Sn0.2 (M=La, Nd) alloys under the same conditions. XRD and TEM revealed that the alloy particles were uniformly dispersed on the CNTs and the average particle size was ca. 30 nm. The composites also showed good stability and the hydrogen storage capacity decreased by less than 6% after 100 adsorption-desorption cycles. Moreover, no noticeable change in crystalline structure was observed for the composites.  相似文献   

2.
利用高压容积法、辅以卸压升温脱附排水法,测定金属钾修饰多壁碳纳米管(K~0-MWCNTs)对H_2的吸附储存容量。结果表明,在室温(~25℃)、~7.25MPa实验条件下其对氢的吸附储存容量可达3.80%(质量百分数);室温下卸至常压的脱附氢量为3.36%(占总吸附氢量的~89%),后续升温(升至673K)的脱附氢量为0.41%(占总吸附氢量的~11%)。  相似文献   

3.
Hydrogen adsorption experiments were carried out in special stainless steel vessels at room temperature (298K) and under 10 MPa using self-synthesized multi-walled carbon nanotubes. In the experiments, carbon nanotubessynthesized by the seeded catalyst method were pretreatedby being soaked in chemical reagents or annealed at hightemperature before they were used to adsorb hydrogen, but their capacity for hydrogen storage was still poor. Carbonnanotubes synthesized by the floating catalyst method were found to be able to adsorb more hydrogen. They have ahydrogen storage capacity of over 4% after they wereannealed at high temperatures, which suggested that theycould be used as a promising material for hydrogen storage.  相似文献   

4.
A novel Ti–Ni–Nb–Zr quaternary filler alloy with the composition of Ti-(19~25)Ni-(15~25)(Nb ?+ ?Zr) (wt.%) was designed. The filler alloy was composed of (Ti,Nb)ss, (Ti,Zr,Nb)ss ?+ ?(Ti,Zr)2Ni, α-Ti and Ti2Ni phases. It was fabricated into filler foil with a thickness of about 45 ?μm by a rapid solidification technique. The results indicate that the liquidus temperature of the Ti–Ni–Nb–Zr brazing alloy was about 978 oC, and the brazing alloy presented excellent wettability on TiAl substrate. The TiAl joint mainly consisted of β/B2 phase, Ti2Al, Ti2AlNi and α2-Ti3Al phases. The diffusion of Al atom from base metal to brazed seam led to the formation of Ti2Al and Ti2AlNi. Considering that no previously references on XRD pattern of Ti2AlNi compound can be found, Ti2AlNi cast alloy specimen was specially prepared and XRD peaks were specially labeled. The micro-hardness and bending strength tests of the Ti2AlNi phase were carried out, and the results were 761 HV and 192 ?MPa, respectively. The brazing parameters of 1010 oC/10 ?min offered the joint shear strength of 280 ?MPa at room temperature, and the joints exhibited tensile strength of 372 ?MPa at room temperature and 340 ?MPa at 750 oC, indicating that the newly developed filler alloy could offer a stable high-temperature strength.  相似文献   

5.
The development of hydrogen energy is hindered by the lack of high-efficiency hydrogen storage materials. To explore new high-capacity hydrogen storage alloys, reversible hydrogen storage in AB2-type alloy is realized by using A or B-side elemental substitution. The substitution of small atomic-radius element Zr and Mg on A-side of YNi2 and partial substitution of large atomic-radius element V on B-side of YNi2 alloy was investigated in this study. The obtained ZrMgNi4, ZrMgNi3V, and ZrMgNi2V2 alloys remained single Laves phase structure at as-annealed, hydrogenated and dehydrogenated states, indicating that the hydrogen-induced amorphization and disproportionation was eliminated. From ZrMgNi4 to ZrMgNi2V2 with the increase of the degree of vanadium substitution, the reversible hydrogen storage capacity increased from 0.6 ?wt% (0.35H/M) to 1.8 ?wt% (1.0H/M), meanwhile the lattice stability gradually increased. The ZrMgNi2V2 alloy could absorb 1.8 ?wt% hydrogen in about 2 ?h ?at 300 ?K under 4 ?MPa H2 pressure and reversibly desorb the absorbed hydrogen in approximately 30 ?min ?at 473 ?K without complicated activation process. The prominent properties of ZrMgNi2V2 elucidate its high potential for hydrogen storage application.  相似文献   

6.
In this paper, a large-sized ingot of Mg-9Gd-3Y-1.5Zn-0.5Zr (wt%) alloy with a diameter of 600 mm was successfully prepared by the semi-continuous casting method. The alloy was subsequently annealed at a relatively low temperature of 430℃ for 12 h as a homogenization treatment. The microstructure and room-temperature mechanical properties of the alloy were investigated systematically. The results show that the as-cast alloy contained a mass of discontinuous lamellar-shaped 18R long-period stacking ordered (LPSO) phases with a composition of Mg10ZnY and an α-Mg matrix, along with net-shaped Mg5(Y,Gd) eutectic compounds at the grain boundaries. Most of the eutectic compounds dissolved after the homogenization treatment. Moreover, the amount and dimensions of the lamellar-shaped LPSO phase obviously increased after the homogenization treatment. The structure of the phase transformed into 14H-type LPSO with composition Mg12Zn(Y,Gd). The mechanical properties of the heat-treated large-sized alloy ingot are uniform. The ultimate tensile strength (UTS) and tensile yield strength (TYS) of the alloy reached 207.2 MPa and 134.8 MPa, respectively, and the elongation was 3.4%. The high performances of the large-sized alloy ingot after the homogenization treatment is attributed to the strengthening of the α-Mg solid solution and to the plentiful LPSO phase distributed over the α-Mg matrix.  相似文献   

7.
The effects of Zn,P and Mg additions on the microstructure and mechanical properties of Nb-22Ti-3Si alloys were studied. The phases of Nbss and Nb_3Si presented in Nb-22Ti-3Si(AC1),Nb-22Ti-3Si-0.2Zn(AC2) and Nb-22Ti-3Si-0.2Mg alloys(AC3). The Nb-22Ti-3Si-0.2P(AC4) alloy consisted of Nbss,Nb_3Si network and eutectic cell of Nbss/α-Nb_5Si_3.By the addition of Zn,the Nb_3Si network was broken and the volume fraction of Nbss increased from 92%to 96%.The values of fracture toughness of the alloy AC2 at ambien...  相似文献   

8.
The hydrogen storage of(TiZr_(0.1))_xCr_(1.7-y)Fe_yMn_(0.3)(1.05x1.2,0.2y0.6)alloys,prepared by Ar plasma arc melting,were investigated by X-ray diffraction,pressure-composition-temperature(PCT).The results indicated that all(TiZr_(0.1))_xCr_(1.7-y)Fe_yMn_(0.3)(1.05≤x≤1.2,0.2≤y≤0.6)alloys were determined as C14-type Laves phase,the cell parameters a,c and unit cell volume of(TiZr_(0.1))xCr_(1.1)Fe_(0.6)Mn_(0.3)(1.05≤x≤1.2)alloys increased with increasing the(TiZr)super-stoichiometry from 1.05 to 1.2,and the value of a/c almost unchanged.The hydrogen absorption and desorption plateau pressure decreased from 5.6,4.4–2.6,2.2 MPa with the increase of(TiZr)super-stoichiometry from 1.05 to1.2 at 274 K respectively,and the hydrogen desorption plateau pressure decline was not obvious when the(TiZr)super-stoichiometry exceeded 1.15.The(TiZr_(0.1))_(1.1)Cr_(1.1)Fe_(0.6)Mn_(0.3)alloy had the best comprehensive properties about the maximum and reversible hydrogen storage capacity was 1.79 and 1.45 wt%respectively.The cell parameters a,c and unit cell volume of(TiZr_(0.1))_(1.1)Cr_(1.7-y)Fe_yMn_(0.3)(0.2≤y≤0.6)alloys increased as the ratio of Fe/Cr content decreased.The hydrogenation and dehydrogenation plateau pressure decreased from 4.5,3.4–1.0,0.9 MPa respectively and the maximum hydrogen storage capacity increased from 1.79 to 2.0 wt%as the Fe content reduced from 0.6 to 0.2 at274 K.The maximum and the reversible hydrogen storage capacity were about 2.0 and 1.65 wt%as the ratio of Fe/Cr was 0.13(ie,(TiZr_(0.1))_(1.1)Cr_(1.5)Fe_(0.2)Mn_(0.3)alloy),its relative molar enthalpy of dissociation hydrogen was24.30 kJ/mol H_2.  相似文献   

9.
The effects of high pressure rheo-squeeze casting (HPRC) on the Fe-rich phases (FRPs) and mechanical properties of Al-17Si-(1,1.5)Fe alloys were investigated. The alloy melts were first treated by ultrasonic vibration (UV) and then formed by high-pressure squeeze casting (HPSC). The FRPs in the as-cast HPSC Al-17Si-1Fe alloys only contained a long, needle-shaped β-Al5FeSi phase at 0 MPa. In addition to the β-Al5FeSi phase, the HPSC Al-17Si-1.5Fe alloy also contained the plate-shaped δ-Al4FeSi2 phase. A fine, block-shaped δ-Al4FeSi2 phase was formed in the Al-17Si-1Fe alloy treated by UV. The size of FRPs decreased with increasing pressure. After UV treatment, solidification under pressure led to further refinement of the FRPs. Considering alloy samples of the same composition, the ultimate tensile strength (UTS) of the HPRC samples was higher than that of the HPSC samples, and the UTS increased with increasing pressure. The UTS of the Al-17Si-1Fe alloy formed by HPSC exceeded that of the Al-17Si-1.5Fe alloy formed in the same manner under the same pressure. Conversely, the UTS of the Al-17Si-1Fe alloy formed by HPRC decreased to a value lower than that of the Al-17Si-1.5Fe alloy formed in the same manner.  相似文献   

10.
A hot-extruded Mg-5Ga alloy was subjected to ageing treatment at 150 ?°C, 190 ?°C and 230 ?°C. The microstructures and mechanical properties of the extruded and aged alloy were examined in this study. Microstructure examinations suggested that particle-shaped and rod-shaped Mg5Ga2 were precipitated in the alloy after peak ageing treatment. The extruded alloy showed the yield strength, ultimate tensile strength and elongation to fracture of 157.6 ?MPa, 248.6 ?MPa and 17.5%, respectively. After peak ageing, the yield strength and ultimate tensile strength can be enhanced by as much as 15.7% and 8.6% reaching 182.3 ?MPa and 270 ?MPa, respectively. The improvement of the tensile strengths is mainly attributed to the enhanced precipitation strengthening by newly formed fine Mg5Ga2 precipitates. The ductility of the alloy was slightly increased by peak ageing at low temperatures (150 ?°C and 190 ?°C), but remarkably decreased by peak ageing at high temperature (230 ?°C) due to the formation of coarsened Mg5Ga2 particles which easily initiated the cracks during tensile deformation.  相似文献   

11.
Aging treatment is an effective way to optimize the mechanical properties of Co-based superalloys. In this study, commercial GH 605 superalloy was subjected to aging treatment at 650 ?°C in a wide time range up to 1000 ?h. The effects of aging time on the tensile characteristics, microstructure evolution and mechanical properties were systematically investigated at room temperature (RT) and 900 ?°C. The results showed that the volume fractions of M6C and M23C6 carbide increased with the aging time. After long-term aging treatment, the yield strength (YS) at RT was enhanced from 490.3 ?MPa to 805.9 ?MPa, while the alloy still had high tensile ductility (above 20%). Microscopic observations by transmission electron microscopy (TEM) indicated that the strengthening mechanism was related to carbide precipitation inside the grains and the change in the dislocation slipping mode. Moreover, long-term aging treatment can increase the elongation from 24.1% to 47.3% at 900 ?°C accompanied by a slight increase of YS from 299.3 ?MPa to 313.9 ?MPa. Based on detailed microstructure analysis the strengthening mechanism can be attributed to the refined grains as well as carbide precipitation inside the grains and around the grain boundaries.  相似文献   

12.
The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu71Al18Mn11 shape memory alloy (SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu71Al18Mn11 SMA with aging temperature and aging time are described by the Austin–Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ·mol?1. Finally, a columnar-grained Cu71Al18Mn11 SMA with both excellent superelasticity (5%–9%) and high martensitic transformation critical stress (443–677 MPa) is obtained through the application of the appropriate aging treatments.  相似文献   

13.
The creep behavior and dislocations mechanism of the Ni3Al-based single crystal alloy IC6SX with [001] orientation were investigated under the testing conditions of 1100 ?°C/137 ?MPa, 1100 ?°C/120 ?MPa and 1070 ?°C/137 ?MPa. It was observed that the temperature and stress had a significant effect on the high temperature creep life of the single crystal alloy. As the temperature was reduced from 1100 ?°C to 1070 ?°C, the creep life increased from 65.07 ?h to 313.8 ?h. As the stress was reduced to 120 ?MPa, the creep life increased to 243.3 ?h. Under the high temperature and low stress condition the dislocations entered the γ′ phase by climbing caused by the atomic diffusion, instead of slipping.  相似文献   

14.
对冷变形后的Co36Fe36Cr18Ni8Ti2合金在700 ℃和800 ℃下再结晶退火,制备成具有高强度及良好耐蚀性的多主元合金。采用电子背散射衍射(electron back-scattered diffraction, EBSD)表征了合金的相分布、再结晶组织以及晶界分布等微观结构特征,采用静态拉伸试验测试了合金的力学性能。结果表明,700 ℃退火的合金断后伸长率较低,但其抗拉强度与屈服强度分别达到了1 038和956 MPa。采用电化学工作站与扫描电子显微镜(scanning electron microscope, SEM)表征了合金在模拟体液中的耐蚀性。结果表明,700 ℃退火的样品具有较好的耐蚀性,腐蚀后的样品表面较为均匀。结合力学性能可知,700 ℃退火的样品具有作为新型医用金属材料的潜力。  相似文献   

15.
In view of the special requirements for strength, heat resistance and corrosion resistance of Al-Zn-Mg-Cu alloy for oil drilling, the Al-6.2 Zn-2.5 Mg-1.6 Cu alloy was prepared by increasing Cu content on basis of Russian Series 1953 alloy. The effect of heat treatment on the microstructures and properties of the alloy was characterized by optical microscope(OM), scanning electron microscope(SEM) and transmission electron microscope(TEM), and investigated by tensile test at room temperature, thermal exposure test and corrosion test. The results show that the strength after T6 aging treatment exhibit a decrease trend as an increase of the solution temperature from465 °C to 480 °C. After the solution treated by the rate of 470 °C/1 h, second phases dissolve into the matrix very well and the strength property reaches optimum. The alloy has better comprehensive properties treated by a solution treatment of 470 °C/1 h and then followed by an aging treatment of 120 °C/24 h + 170 °C/1 h + 120 °C/24 h. Under the aging state, the precipitated phases inside the grains are suitable in size, while on the grain boundary distribute discontinuously and the precipitate-free zone is obvious. Besides, the alloy still maintain high tensile properties. The yield strength, tensile strength and elongation are 650 MPa, 686 MPa,12.0%, respectively. The yield strength retention after heat exposure is 92%. The alloy has good corrosion resistance and the exfoliation corrosion degree. The average corrosion rate in the H_2S and CO_2 environment is 0.0024 mm/a, which is far less than the required 0.12 mm/a. It is insensitive to H_2S and CO_2 environments.  相似文献   

16.
系统研究了Ti9.6V86.4Fe4储氢合金中掺入10%(质量分数)的Ti0.9Zr0.1Mn1.5进行复合球磨对其相结构及储氢性能的影响.X射线衍射分析表明,Ti9.6V86.4Fe4铸态合金具有单一的体心立方(BCC)结构固溶体相,当添加10%的Ti0.9Zr0.1Mn1.5复合球磨后,复合物由BCC主相和C14型Laves第2相组成.扫描电子显微镜及X射线能量色散谱仪分析表明,Ti9.6V86.4Fe4合金粉颗粒表面包覆了一层Ti0.9Zr0.1Mn1.5微粒.储氢性能测试表明,Ti9.6V86.4Fe4中掺入10%的Ti0.9Zr0.1Mn1.5复合球磨后,虽然室温最大吸氢量(质量分数)从3.86%略微降低至3.61%,但其有效储氢量(质量分数)由2.01%提高到2.11%,活化性能和P-C-T曲线平台特性都得到了明显改善.  相似文献   

17.
Brazing of quartz fiber reinforced silica composites (QFSC) to Invar alloy was carried out in a vacuum at 1173 K for 10 min using Ag-21Cu-4.5Ti metal filler.Experiments indicated that composites prefilled with CaCO3 micrograins had good wettability.The CaCO3 decomposed to CaO during brazing.After brazing,a joint of structure QFSC/3CaO·2SiO2+Ti3O5+Fe2Ti+NiTi+Ag(s,s)+ Cu(s,s)/Invar was established.The shear strength of the brazed joint reached 11.6 MPa at room temperature,which is about five times the shear strength of that obtained without surface filling.  相似文献   

18.
The intermetallic compound ZrCo was prepared, and its hydrogen-induced disproportionation in hydrogen desorption processes was investigated. The hydrogenation-dehydrogenation thermodynamics of the ZrCo alloy was evaluated by pressure-composition isotherm measurements at different temperatures. The kinetic processes of hydrogen-induced disproportionation at different temperatures under certain pressures were detailedly studied. The disproportionation rate of the ZrCo alloy increased with the increases of temperature and initial hydrogen pressure under experimental conditions. However, the maximum attainable extent of disproportionation did not change much with an increase in temperature or initial hydrogen pressure. The crystallographic structure analysis of the ZrCo alloy combining with its corresponding dehydrogenation kinetic curves under the conditions of an initial hydrogen pressure of 0.2 MPa and a temperature of 723 K indicated that the basic process of disproportionation reactions was composed of four stages:rapid dehydrogenation of ZrCoH3, equilibrium of dehydrogenation, simultaneity of dehydrogenation and disproportionation, and completion of disproportionation.  相似文献   

19.
系统研究了机械球磨改性处理时间(t=0,1,2,4,8 h)对Ti9.6Cr11V75.4Fe4合金相结构和储氢性能的影响.XRD及扫描电镜分析表明,Ti9.6Cr11V75.4Fe4合金在球磨前后均为体心立方结构的固溶体单相,随着球磨时间的增加,合金的晶胞体积略微减小,合金颗粒逐渐细化并发生团聚.储氢性能测试表明,球磨改性处理能有效地改善合金的活化性能,随着球磨时间的增加,合金的室温可逆有效储氢量先增加后降低.其中,当球磨时间为2 h时,合金具有最佳的综合储氢性能,其室温最大吸氢量(质量分数)为3.7%,可逆有效储氢量(质量分数)为2.23%.  相似文献   

20.
Rare-earth AB5-type La–Ni–Al hydrogen storage alloys are widely studied due to their extensive application potentials in hydrogen isotope storage, hydrogen isotope isolation and hydrogen compressors, etc. Good hydriding/dehydriding kinetics, easily activation, high reversibility are important factors for their practical application. However, their overall hydrogen storage performance, especially plateau pressure and hydrogen absorption/desorption durability need to be further optimized. In this study, the microstructures and the hydrogen storage properties of as-cast, annealed, and melt-spun LaNi3.95Al0.75Co0.3 alloys were investigated. The experimental results of XRD and SEM showed that all alloys contained a pure CaCu5 type hexagonal structure LaNi4Al phase. The cell volume increased in an order of annealed ?> ?melt-spun ?> ?as-cast, resulting in a lower hydrogen absorption/desorption plateau pressure and a more stable hydride phase. The hydrogen storage capacity of three alloys was almost the same. The slope factor of the annealed and melt-spun alloys is smaller than the as-cast alloy, indicating that heat-treatment process can make the alloys more uniform. For the cycle stability of the alloys, the hydrogen absorption rate of the annealed alloy and melt-spun alloy was much faster than that of the as-cast alloy after 500 cycles. The melt-spun alloy showed high pulverization resistance during hydrogen absorption/desorption, and exhibited an excellent cycling retention of 99% after 500 cycles, suggesting that melt-spinning process can enhance the cycle stability and improve the cycle life of the alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号