首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Al2O3/TiO2/Fe2O3/Yb2O3 composite powder was synthesized via the sol-gel method. The structure, morphology, and radar-absorption properties of the composite powder were characterized by transmission electron microscopy, X-ray diffraction analysis and RF impedance analysis. The results show that two types of particles exist in the composite powder. One is irregular flakes (100-200 nm) and the other is spherical Al2O3 particles (smaller than 80 nm). Electromagnetic wave attenuation is mostly achieved by dielectric loss. The maximum value of the dissipation factor reaches 0.76 (at 15.68 GHz) in the frequency range of 2-18 GHz. The electromagnetic absorption of waves covers 2-18 GHz with the matching thicknesses of 1.5-4.5 mm. The absorption peak shifts to the lower-frequency area with increasing matching thickness. The effective absorption band covers the frequency range of 2.16-9.76 GHz, and the maximum absorption peak reaches -20.18 dB with a matching thickness of 3.5 mm at a frequency of 3.52 GHz.  相似文献   

2.
Five(Ni52.5Mn23.5Ga24)100-xCox(x = 0,2,4,6,8) alloys were prepared by arc melting,and the effects of Co addition on the martensitic phase transformation,crystal structure and magnetization were investigated.The phase transformation temperatures Ms,Mf,As and Af are proportional to the content of Co in the(Ni52.5Mn23.5Ga24)100-xCox alloys,which appears to be due to the variation in the valance electron concentration.The Curie temperature is sensitive to the composition of the alloy.As the amount of Co changes,both the Co-Mn exchange interaction and the distance between Mn atoms change.These,in turn,affect the Curie temperature and magnetization behavior of the alloy.The martensite phases in all the alloys are domained in three different orientations,the domain boundary was determined to belong to the family of {112} lattice planes.  相似文献   

3.
The microstructures and free-volume evolutions of as-cast and pre-annealed Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glasses during rolling deformation have been investigated. No phase transformation is detected in the as-cast/rolled specimen. However,the structural stability of the glass against plastic deformation is worse after pre-annealing,indicated by nanocrystallization in preannealed/rolled specimens with large deformation degrees. Moreover,with increasing deformation degree,the free-volume content in a pre-annealed/rolled specimen increases at a lower average rate than that in an as-cast/rolled specimen.  相似文献   

4.
Metal Sm has been widely used in making Al-Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al-Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant (CVCC) technique was used to measure the conductivity for the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 electrolysis medium in the temperature range from 905 to 1055℃. The temperature (t) and the addition of Al2O3 (W(Al2O3)), Sm2O3 (W(Sm2O3)), and a combination of Al2O3 and Sm2O3 into the basic fluoride system were examined with respect to their effects on the conductivity (κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature (t) and decreases with the addition of Al2O3 or Sm2O3 or both. We concluded that the optimal operation conditions for Al-Sm intermediate alloy production in the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 system are W(Al2O3) + W(Sm2O3)=3wt%, W(Al2O3):W(Sm2O3)=7:3, and a temperature of 965 to 995℃, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.  相似文献   

5.
A spherical-like Ni0.6Co0.2Mn0.2(OH)2 precursor was tuned homogeneously to synthesize LiNi0.6Co0.2Mn0.2O2 as a cathode material for lithium-ion batteries. The effects of calcination temperature on the crystal structure, morphology, and the electrochemical performance of the as-prepared LiNi0.6Co0.2Mn0.2O2 were investigated in detail. The as-prepared material was characterized by X-ray diffraction, scanning electron microscopy, laser particle size analysis, charge-discharge tests, and cyclic voltammetry measurements. The results show that the spherical-like LiNi0.6Co0.2Mn0.2O2 material obtained by calcination at 900℃ displayed the most significant layered structure among samples calcined at various temperatures, with a particle size of approximately 10 μm. It delivered an initial discharge capacity of 189.2 mAh·g-1 at 0.2C with a capacity retention of 94.0% after 100 cycles between 2.7 and 4.3 V. The as-prepared cathode material also exhibited good rate performance, with a discharge capacity of 119.6 mAh·g-1 at 5C. Furthermore, within the cut-off voltage ranges from 2.7 to 4.3, 4.4, and 4.5 V, the initial discharge capacities of the calcined samples were 170.7, 180.9, and 192.8 mAh·g-1, respectively, at a rate of 1C. The corresponding retentions were 86.8%, 80.3%, and 74.4% after 200 cycles, respectively.  相似文献   

6.
Amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were successfully fabricated by mechanical alloying. The microstructure, glass-forming ability, and crystallization behavior of amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The isothermal crystallization kinetics was analyzed by the Johnson–Mehl–Avrami equation. In the results, the supercooled liquid region of the amorphous alloy is as high as 81 K, as determined by non-isothermal DSC curves. The activation energy for crystallization is as high as 312.6 kJ·mol?1 obtained by Kissinger and Ozawa analyses. The values of Avrami exponent (n) imply that the crystallization is dominated by interface-controlled three-dimensional growth in the early stage and the end stage and by diffusion-controlled two- or three-dimensional growth in the middle stage. In addition, the amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were sintered under 2 GPa at temperatures of 673 K and 723 K. The results show that the Vickers hardness of the compacted powders is as high as Hv 1215.  相似文献   

7.
Oxide eutectic ceramic in situ composites have attracted significant interest in the application of high-temperature structural materials because of their excellent high-temperature strength, oxidation and creep resistance, as well as outstanding microstructural stability. The directionally solidified ternary Al2O3/YAG/ZrO2 hypereutectic in situ composite was successfully prepared by a laser zone remelting method, aiming to investigate the growth characteristic under ultra-high temperature gradient. The microstructures and phase composition of the as-solidified hypereutectic were characterized by using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The results show that the composite presents a typical hypereutectic lamellar microstructure consisting of fine Al2O3 and YAG phases, and the enriched ZrO2 phases with smaller sizes are randomly distributed at the Al2O3/YAG interface and in Al2O3 phases. Laser power and scanning rate strongly affect the sample quality and microstructure characteristic. Additionally, coarse colony microstructures were also observed, and their formation and the effect of temperature gradient on the microstructure were discussed.  相似文献   

8.
Al-Ti-O inclusions always clog submerged nozzles in Ti-bearing Al-killed steel. A typical synthesized Al2TiO5 inclusion was immersed in a CaO-SiO2-Al2O3 molten slag for different durations at 1823 K. The Al2TiO5 dissolution paths and mechanism were revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Decreased amounts of Ti and Al and increased amounts of Si and Ca at the dissolution boundary prove that inclusion dissolution and slag penetration simultaneously occur. SiO2 diffuses or penetrates the inclusion more quickly than CaO, as indicated by the w(CaO)/w(SiO2) value in the reaction region. A liquid product (containing 0.7–1.2 w(CaO)/w(SiO2), 15wt%–20wt% Al2O3, and 5wt%–15wt% TiO2) forms on the inclusion surface when Al2TiO5 is dissolved in the slag. Al2TiO5 initially dissolves faster than the diffusion rate of the liquid product toward the bulk slag. With increasing reaction time, the boundary reaches its largest distance, the Al2TiO5 dissolution rate equals the liquid product diffusion rate, and the dissolution process remains stable until the inclusion is completely dissolved.  相似文献   

9.
Nanocrystalline powders of ZrO2-8mol%SmO1.5(8SmSZ), ZrO2-8mol%GdO1.5 (8GdSZ), and ZrO2-8mol%YO1.5(8YSZ) were prepared by a simple reverse-coprecipitation technique. Differential thermal analysis/thermogravimetry (DTA/TG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM) were used to study the phase transformation and crystal growth behavior. The DTA results showed that the ZrO2 freeze-dried precipitates crystallized at 529, 465, and 467℃ in the case of 8SmSZ, 8GdSZ, and 8YSZ, respectively. The XRD and Raman results confirmed the presence of tetragonal ZrO2 when the dried precipitates were calcined in the temperature range from 600 to 1000℃ for 2 h. The crystallite size increased with increasing calcination temperature. The activation energies were calculated as 12.39, 12.45, and 16.59 kJ/mol for 8SmSZ, 8GdSZ, and 8YSZ respectively.  相似文献   

10.
In this work, network former SiO2 and network intermediate Al2O3 were introduced into typical low-melting binary compositions CaO·B2O3, CaO·2B2O3, and BaO·B2O3 via an aqueous solid-state suspension milling route. Accordingly, multiple-phase aluminosilicate glass-ceramics were directly obtained via liquid-phase sintering at temperatures below 950℃. On the basis of liquid-phase sintering theory, mineral-phase evolutions and glass-phase formations were systematically investigated in a wide MO-SiO2-Al2O3-B2O3 (M=Ca, Ba) composition range. The results indicate that major mineral phases of the aluminosilicate glass-ceramics are Al20B4O36, CaAl2Si2O8, and BaAl2Si2O8 and that the glass-ceramic materials are characterized by dense microstructures and excellent dielectric properties.  相似文献   

11.
The influence of aging on the microstructure and mechanical properties of Cu-11.6wt%Al-3.9wt%Ni-2.5wt%Mn shape memory alloy (SMA) was studied by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometer, and differential scanning calorimeter (DSC). Experimental results show that bainite, γ2, and α phase precipitates occur with the aging effect in the alloy. After aging at 300dgC, the bainitic precipitates appear at the early stages of aging, while the precipitates of γ2 phase are observed for a longer aging time. When the aging temperature increases, the bainite gradually evolves into γ2 phase and equilibrium α phase (bcc) precipitates from the remaining parent phase. Thus, the bainite, γ2, and α phases appear, while the martensite phase disappears progressively in the alloy. The bainitic precipitates decrease the reverse transformation temperature while the γ2 phase precipitates increase these temperatures with a decrease of solute content in the retained parent phase. On the other hand, these precipitations cause an increasing in hardness of the alloy.  相似文献   

12.
The thermal stability and glass forming ability (GFA) of Zr35-xTi30Cu7.5Be27.5Agx (x = 0-10) alloys were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and ultrasonic techniques. We found that the addition of 1 at.% Ag can considerably enhance the GFA as indicated by an increase in the critical glass dimension from 15 mm in the Zr35Ti30Cu7.5Be27.5 alloy to 20 mm in the Zr34Ti30Cu7.5Be27.5Ag1 alloy. However, with the addition of more Ag the supercooled liquid region (△Tx) and y parameter (defined as Tx/(Tg+Tl)) drastically decreased from 155 K and 0.436 to 76 K and 0.363, respectively, resulting in a decrease in the GFA. Additionally, the elastic constant (the ratio of shear modulus to bulk modulus or Poisson’s ratio) was also used as a gauge to evaluate the GFA in Zr35-xTi30Cu7.5Be27.5Agx alloys.  相似文献   

13.
The effect of different Nb additions on the mechanical properties and microstructure evolution of grain boundary allotriomorphic ferrite (FGBA) / granular bainite (BG) air cooling bainitic steels was investigated. The results indicate that the tensile strength and yield strength increase by 157 and 97 MPa, respectively with the addition of 0.02wt% Nb. The steel acquires superior strength and toughness with the addition of 0.06wt% Nb. The results of scanning electron microscopy and transmission electron microscopy reveal that the addition of Nb not only refines the size of granular bainite but also increases the volume fraction of granular bainite in FGBA/BG steels. The refinement effect of granular bainite is improved with the increase of Nb content.  相似文献   

14.
CaO-Al2O3-SiO2 (CAS) glass-ceramics were prepared via a melting method using naturally cooled yellow phosphorus furnace slag as the main raw material. The effects of the addition of Fe2O3 on the crystallization behavior and properties of the prepared glass-ceramics were studied by differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The crystallization activation energy was calculated using the modified Johnson-Mehl-Avrami equation. The results show that the intrinsic nucleating agent in the yellow phosphorus furnace slag could effectively promote the crystallization of CAS. The crystallization activation energy first increased and then decreased with increasing amount of added Fe2O3. At 4wt% of added Fe2O3, the crystallization activation energy reached a maximum of 676.374 kJ·mol-1. The type of the main crystalline phase did not change with the amount of added Fe2O3. The primary and secondary crystalline phases were identified as wollastonite (CaSiO3) and hedenbergite (CaFe(Si2O6)), respectively.  相似文献   

15.
Bulk Al/Al3Zr composite was prepared by a combination of mechanical alloying (MA) and hot extrusion processes. Elemental Al and Zr powders were milled for up to 10 h and heat treated at 600℃ for 1 h to form stable Al3Zr. The prepared Al3Zr powder was then mixed with the pure Al powder to produce an Al-Al3Zr composite. The composite powder was finally consolidated by hot extrusion at 550℃. The mechanical properties of consolidated samples were evaluated by hardness and tension tests at room and elevated temperatures. The results show that annealing of the 10-h-milled powder at 600℃ for 1 h led to the formation of a stable Al3Zr phase. Differential scanning calorimetry (DSC) results confirmed that the formation of Al3Zr began with the nucleation of a metastable phase, which subsequently transformed to the stable tetragonal Al3Zr structure. The tension yield strength of the Al-10wt%Al3Zr composite was determined to be 103 MPa, which is approximately twice that for pure Al (53 MPa). The yield stress of the Al/Al3Zr composite at 300℃ is just 10% lower than that at room temperature, which demonstrates the strong potential for the prepared composite to be used in high-temperature structural applications.  相似文献   

16.
Spinel compounds LiNi0.5Mn1.3Ti0.2O4 (LNMTO) and Li4Ti5O12 (LTO) were synthesized by different methods. The particle sizes of LNMTO and LTO are 0.5–2 and 0.5–0.8 μm, respectively. The LNMTO/LTO cell exhibits better electrochemical properties at both a low current rate of 0.2C and a high current rate of 1C. When the specific capacity was determined based on the mass of the LNMTO cathode, the LNMTO/LTO cell delivered 137 mA·h·g−1 at 0.2C and 118.2 mA·h·g−1 at 1C, and the corresponding capacity retentions after 30 cycles are 88.5% and 92.4%, respectively.  相似文献   

17.
The superconductive Josephson junction is the key device for superconducting quantum computation. We have fabricated Al/Al2O3/Al tunnel junctions using a double angle evaporation method based on a suspended shadow mask. The Al2O3 junction barrier has been formed by introducing pure oxygen into the chamber during the fabrication process. We have adjusted exposure conditions by changing either the oxygen pressure or the oxidizing time during the formation of tunnel barriers to control the critical current density Jc and the junction specific resistance Rc. Measurements of the leakage in Al/Al2O3/Al tunnel junctions show that the devices are suitable for qubit applications.  相似文献   

18.
Work hardening is a well-known phenomenon occurring in crystalline metals during deformation,which has been widely used to increase the strength of metals although their ductility is usually reduced simultaneously. Here we report that the plastic strain of Zr41Ti14Cu12.5Ni10Be22.5 (at.%) bulk metallic glasses has been increased from 0.3% for the as-cast sample to 2.5%-8.0% for samples that have experienced pre-deformation under constrained conditions. The pre-deformed glassy alloys possess more free volume and abundant introduced shear bands,which are believed to promote the activation of shear bands in post-deformation and result in an increase in plasticity. The orientation of the pre-introduced shear bands relative to the loading direction will affect the deformation behavior of pre-deformed samples. The present results show that pre-deformation of this glassy alloy will result in work toughening. This work toughening effect can be removed by isothermal annealing at a sub-Tg (glass transition) temperature,which causes annihilation of free volume and healing of shear bands.  相似文献   

19.
To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni-Co-Fe-based end-of-life (EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO-Al2O3-SiO2 slag. The activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B=(%CaO)/(%SiO2)=1, where B is the basicity. We observed that controlling the slag composition at approximately B=1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.  相似文献   

20.
Oxalic-acid-based co-precipitation method was employed to prepare LiNi2/3Mn1/3O2 sample with a high-ordered structure. Li+, Ni2+ and Mn2+ acetates were used as starting materials. The influence of the amount of lithium source in the starting materials on Li+ content, disorder of Li+-Ni2+ ions, and electrochemical performance has been investigated. Rietveld refinement shows that the sample prepared with 20% excess Li-source in the starting materials exhibits a perfect ordered structure. A specific discharge capacity is as high as 172 mAh/g at C/20 in the voltage range of 4.35–2.7 V. However, the cyclability is not satisfactory: about 25.3% fade in capacity was observed over 50 cycles. Chemically stable SiO2 was coated on the surface of LiNi2/3Mn1/3O2 particles. A significant improvement in cyclability was attained with 3 wt% SiO2 coating, which is ascribable to the protection of LiNi2/3Mn1/3O2 particles from being dissolved into the electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号