首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 703 毫秒
1.
玻璃纤维表面光滑且呈化学惰性,聚丙烯缺少极性官能团,导致玻璃纤维与聚丙烯之间的界面润湿性能较差。为了提升玻璃纤维增强聚丙烯(GFRP)复合材料的界面结合性能,设计并搭建了空气等离子体炬处理装置,通过该装置在连续玻璃纤维束表面沉积SiOx纳米颗粒,并测定了改性玻璃纤维的润湿性能和GFRP复合材料的界面剪切强度;采用响应曲面法(RSM)分析了喷嘴与纤维间的距离、载气流量、处理时间对玻璃纤维润湿性能的影响,并对这些工艺参数进行了优化。结果表明:当处理距离为20 mm、载气流量为1.5 L/min、处理时间为6 s时,与对照组相比,改性后的玻璃纤维与聚丙烯的接触角降低了49.8%,GFRP复合材料的界面剪切强度提高了94.7%;载气流量对玻璃纤维润湿性能的影响程度最大,处理时间次之,处理距离的影响最小。优化后的工艺参数为:喷嘴与纤维间的距离为18 mm,载气流量为1.7 L/min,处理时间为7 s。在此工艺条件下制备了空气等离子体炬改性的玻璃纤维,实测的接触角(24.6°)与预测值(25.0°)之间的偏差仅为1.6%。  相似文献   

2.
为改善芳纶织物增强复合材料的界面黏结性能,采用常压氦-氧介质阻挡放电(DBD)等离子体处理对芳纶织物进行表面改性,研究氧气流量变化对织物等离子体处理效果的影响.通过测试处理前后芳纶织物的表面形貌、结构组成、润湿性能、粗糙度和拉伸性能来表征等离子体的改性效果.结果表明:DBD等离子体处理后,芳纶纤维的表面经过刻蚀,粗糙程度明显增加;纤维的化学组成没有显著变化,仅CO等极性基团有所增加;芳纶织物的润湿性显著改善;拉伸性能略有提高.综合考虑,氧气流量为10mL/min时处理效果较好.  相似文献   

3.
借助纳米颗粒的高比表面积特性,将纳米二氧化硅通过化学接枝方法修饰玻璃纤维表面,制备玻璃纤维/聚丙烯(PP)热塑复合材料。通过SEM表征纳米二氧化硅在玻璃纤维表面的分布形态,结果表明纳米颗粒在纤维表面分散良好;通过界面剪切强度测试(IFSS)和界面断裂韧性测试(GⅡC)表征复合材料界面的静态力学性能,结果显示材料的界面剪切强度与界面断裂韧性同时获得了较大的提升;动态热机械分析测试(DMA)的结果表明复合材料在动态测试下的综合界面结合性能均得到较大的提升。  相似文献   

4.
采用氩气等离子体结合偶联剂技术对聚对苯撑苯并二噁唑(PBO)纤维进行表面改性,用SEM,XPS和液滴形状法对改性前后纤维表面的形态结构、组成和与水的接触角进行表征,通过单丝拔出试验检测改性前后PBO纤维与环氧树脂基体的界面剪切强度.结果表明,PBO纤维经改性后,其表面亲水性和与环氧树脂的界面剪切强度都有了很大的提高.在偶联剂含量为2%(质量分数),氩气等离子处理条件为2m in,30W和50Pa时,PBO纤维与水的接触角从原丝的大于90°下降到54.5;°相应的界面剪切强度比PBO原丝提高了78%,高达10.44MPa,而且改性后PBO纤维与环氧树脂的界面剪切强度的衰减效应不明显,与水的浸润性也基本不随时间退化.  相似文献   

5.
接枝聚丙烯蜡对玻璃纤维增强聚丙烯界面作用   总被引:1,自引:1,他引:1  
在聚丙烯蜡分子链中引入羧基官能团,并用其作为玻璃纤维增强聚丙烯的界面处理剂。通过改进的单丝临界长度法测定了四处偶联剂与上述聚丙烯蜡共同处理的玻璃纤维与聚丙烯的界面剪切强度,发现改性或者未改性的聚丙烯蜡的加入都会使增强体系界面剪切强度明显提高,分析其原因可能是未改性的聚丙烯蜡分子链上本身含有一定的极性基团。但是,偶联剂种类的变化对体系界面剪切强度的影响却很小。  相似文献   

6.
通过测定,得出马来酸酐改性聚丙烯(MPP)是提高玻璃纤维与聚丙烯树脂界面剪切强度的关键因素,而偶联剂的变化对体系界面剪切强度的影响较少,用仪器分析证实了酸酐基团与玻璃纤维表面发生化学反应的实质,以及当界面存在改性聚丙烯时,应选择A-174TM硅烷偶联剂处理增强聚丙烯的玻璃纤维,而不是传统的A-1100TM硅烷偶联剂。  相似文献   

7.
通过测定,得出马来酸酐改性聚丙烯(MPP)是提高玻璃纤维与聚丙烯树脂界面剪切强度的关键因素,而偶联剂的变化对体系界面剪切强度的影响较少,用仪器分析证实了酸酐基因与玻璃纤维表面发生化学反应的实质,以及当界面存在改性聚丙烯时,应选择A-174^TM硅烷偶联剂处理增强聚丙烯的玻璃纤维,而不是传统的A-1100^TM硅烷偶联剂。  相似文献   

8.
基于纳米颗粒比表面积高的特性,将超声震荡分散后的纳米SiO2通过化学接枝方法修饰玻璃纤维表面制备玻璃纤维/聚丙烯热塑性复合材料。通过扫描电子显微镜(SEM)表征纳米SiO2在玻纤表面的分布状态及其与纤维树脂的结合情况,结果表明纳米颗粒在纤维表面分布状况良好,纤维与树脂能较为紧密地结合。通过动、静态力学测试表征复合材料的界面结合情况及整体力学性能,结果表明复合材料在动态热机械分析(DMA)测试下具备良好的综合界面性能;与空白组对比,复合材料的层间剪切强度最高提升约86%,拉伸强度最高提升约300%,弯曲强度最高提升约94%。  相似文献   

9.
以玻璃纤维/聚丙烯为研究对象,建立热塑性熔融树脂浸渍纤维的理论模型,模型表征在实验过程中不同加工工艺条件、熔体黏度以及纤维结构对树脂完全浸渍纤维束所需时间的影响,同时探讨了相关机理。树脂浸渍纤维的程度通过所制试样的层间剪切强度来表征,并通过扫描电镜对预浸带界面进行研究,结果表明:纤维束在浸渍机头中的停留时间、浸渍机头的温度、纤维束展宽以及选择不同的树脂基体,均将影响树脂与纤维两相间的界面结合,并最终影响材料的力学性能;树脂基体中添加相容剂马来酸酐接枝聚丙烯(PP-g-MAH)在玻璃纤维和树脂基体两相间能够起到交联作用,明显提高两相间的界面结合强度,使得复合材料的力学性能优于未添加PP-g-MAH的试样,但在基体中添加过多的PP-g-MAH,试样的力学性能则表现出下降的趋势。  相似文献   

10.
采用MTS万能试验机对不同温度处理后的玄武岩纤维增强复合材料(BFRP)筋和玻璃纤维增强复合材料(GFRP)筋的拉伸和剪切性能进行测试,研究了高温对BFRP筋和GFRP筋力学性能和破坏模式的影响.利用Weibull模型对不同温度处理后BFRP筋和GFRP筋的拉伸强度进行统计分析,采用热重分析仪定量化阐明BFRP筋和GFRP筋的热分解机制.结果表明:高温会导致BFRP筋和GFRP筋发生明显的颜色和形貌变化;BFRP筋和GFRP筋的拉伸强度、极限应变、韧性和剪切强度均随着温度的升高而呈先上升后下降的趋势,而弹性模量变化不明显.与相同温度处理后的GFRP筋相比,BFRP筋的拉伸性能较差,剪切性能较好;BFRP筋和GFRP筋的热分解特性解释了其高温后力学性能的退化机理.  相似文献   

11.
研究了纳米碳酸钙浸渍改性对单根竹纤维表面碳酸钙附着情况、拉伸性能以及竹纤维/聚丙烯复合材料拉伸性能的影响,并将改性效果与纳米碳酸钙原位沉积改性进行对比。结果表明,纳米碳酸钙浸渍改性可以使碳酸钙颗粒均匀填充竹纤维表面微孔、褶皱等缺陷部位,附着的碳酸钙颗粒粒径均匀,分散性较好,附着量达到21.39%。经浸渍改性的单根竹纤维力学性能有所提高,拉伸强度、弹性模量、断裂伸长率分别提高了15.98%、22.15%和5.21%,但提高幅度低于原位沉积改性。分别将纳米碳酸钙浸渍、原位沉积改性竹纤维与聚丙烯薄膜制成竹塑复合材料,通过断面形貌观察发现两种改性方法均可改善竹纤维与聚丙烯的界面结合性能,复合材料拉伸性能相应提高,浸渍改性使复合材料拉伸强度和弹性模量分别提高了6.95%和15.80%,原位沉积改性分别提高18.68%和25.41%。虽然浸渍改性效果低于原位沉积改性,但工艺更简单。  相似文献   

12.
通过对玻璃纤维与聚丙烯界面剪切强度的测量,以及对其界面结晶形态的观测,发现界面产生横晶的充分条件是界面存在较强的相互作用和样品的缓慢冷却。提出了横晶形成机理,并推断横晶的形成会导致玻璃纤维与聚丙烯树脂界面结合强度的明显下降。用观测到的横晶与基体球晶的冲击线进一步证实了横晶形成机理  相似文献   

13.
在分析气溶胶喷射打印技术工作原理的基础上,利用商用压电陶瓷雾化片和自行设计制造的喷印头,构建出由气溶胶喷射打印装置、温度控制装置和运动控制装置3部分构成的气溶胶喷射打印系统。以纳米银导电油墨为对象,采用单参量对比实验分析法,研究鞘气流量、载气流量、喷嘴与衬底间距、打印速度、打印层数等因素对打印成形宽度的影响。结果表明:随着载气流量增大、层数增加,纳米银导电油墨沉积成形宽度增加;在实验参数范围内,载气流量和打印层数对成形线宽影响明显,且呈正相关;线宽随着鞘气流量的增大先减小后增大;喷嘴与衬底间距在15~45 mm范围内对线宽无明显影响;在喷嘴直径为200 μm,鞘气流量为50 mL·min-1,载气流量为3 mL·min-1,喷嘴与衬底间距为3 mm,衬底移动速度为3 mm·s-1,打印层数为6~8层,加热板温度为80 ℃时,可获得最小宽度为26 μm,高度为7 μm的均匀线条,这也是纳米银导电油墨喷射打印的最优工艺参数。  相似文献   

14.
采用氨丙基三乙氧基硅烷(KH-550)、丙基三甲氧基硅烷(KH-570)以及马来酸酐接枝聚丙烯(MAPP)分别对纤维素、木屑和秸秆进行了表面改性处理,并分别制备了三种植物纤维增强聚丙烯复合材料,考察了复合材料的拉伸性能与改性方法、纤维类型及纤维含量的关系。结果表明,复合材料的拉伸强度随着纤维含量提高而降低;MAPP处理较硅烷偶联剂处理的纤维-基体界面粘接性能改善较大,其拉伸强度最大提高了50%,而断裂延伸率和断裂韧性也由于界面结合力提高而明显降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号