首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
利用熔融浸渍法制备了玻纤毡增强聚丙烯复合材料,考查了相容剂马来酸酐接枝聚丙烯(PP-g-MAH)含量对玻纤毡增强聚丙烯复合材料力学性能的影响;并使用FTIR、DSC、POM对不同相容剂PP-g-MAH含量下玻纤毡增强聚丙烯复合材料的结晶特点进行了研究。结果表明:树脂基体中含有适量的PP-g-MAH时,玻纤毡增强聚丙烯复合材料强度增加的同时冲击韧性可以得到保持。通过对其基体结晶结构研究发现,适量的PP-g-MAH含量可促使玻纤表面产生适量界面横晶的同时也可使基体主体产生均匀的晶体结构,进而获得适宜的界面结合和基体韧性,平衡强度和韧性之间的矛盾。  相似文献   

2.
利用熔融浸渍法制备了玻纤毡增强聚丙烯复合材料,考查了相容剂马来酸酐接枝聚丙烯(PP-g-MAH)含量对玻纤毡增强聚丙烯复合材料力学性能的影响;并使用FTIR、DSC、POM对不同相容剂PP-g-MAH含量下玻纤毡增强聚丙烯复合材料的结晶特点进行了研究。结果表明:树脂基体中含有适量的PP-g-MAH时,玻纤毡增强聚丙烯复合材料强度增加的同时冲击韧性可以得到保持。通过对其基体结晶结构研究发现,适量的PP-g-MAH含量可促使玻纤表面产生适量界面横晶的同时也可使基体主体产生均匀的晶体结构,进而获得适宜的界面结合和基体韧性,平衡强度和韧性之间的矛盾。  相似文献   

3.
基于纳米颗粒比表面积高的特性,将超声震荡分散后的纳米SiO2通过化学接枝方法修饰玻璃纤维表面制备玻璃纤维/聚丙烯热塑性复合材料。通过扫描电子显微镜(SEM)表征纳米SiO2在玻纤表面的分布状态及其与纤维树脂的结合情况,结果表明纳米颗粒在纤维表面分布状况良好,纤维与树脂能较为紧密地结合。通过动、静态力学测试表征复合材料的界面结合情况及整体力学性能,结果表明复合材料在动态热机械分析(DMA)测试下具备良好的综合界面性能;与空白组对比,复合材料的层间剪切强度最高提升约86%,拉伸强度最高提升约300%,弯曲强度最高提升约94%。  相似文献   

4.
采用熔融浸渍法制备了长玻璃纤维增强PA66复合材料,通过对树脂熔体黏度、预浸料浸渍程度和纤维断裂率、材料力学性能进行测试及扫描电子显微镜(SEM)观察,分别研究了不同含量的增韧剂乙烯-辛烯共聚物接枝马来酸酐(POE-g-MAH)和乙烯-辛烯共聚物接枝甲基丙烯酸缩水甘油酯(POE-g-GMA)对复合材料性能的影响。实验结果表明:随着含量的提高,两种增韧剂均能够使长玻璃纤维增强PA66复合材料的冲击强度增大,树脂与纤维界面的结合程度提升,其中POE-g-GMA的增韧及界面改善效果更为明显,可有效提升复合材料的力学性能。  相似文献   

5.
主要探讨如何利用玻璃纤维和丙纶的共混纱来加工双轴向纬编针织热塑性复合材料及其力学性能,内容包括双轴向纬编针织预制件的编织,热塑性复合材料的热压成型加工以及试样的拉伸试验和分析.研究结果表明,采用玻璃纤维和丙纶(GF/PP)的共混纱作衬经和衬纬纱,有利于基体树脂丙纶的浸渍和分布以及基体树脂丙纶的界面结合,不仅大大改善了复合材料的加工质量,而且提高了复合材料的力学性能.  相似文献   

6.
通过对玻璃纤维与聚丙烯界面剪切强度的测量,以及对其界面结晶形态的观测,发现界面产生横晶的充分条件是界面存在较强的相互作用和样品的缓慢冷却。提出了横晶形成机理,并推断横晶的形成会导致玻璃纤维与聚丙烯树脂界面结合强度的明显下降。用观测到的横晶与基体球晶的冲击线进一步证实了横晶形成机理  相似文献   

7.
通过对玻璃纤维与聚丙烯界面剪切强度的测量,以及对其界面结晶形态的观测,发现界面产生横晶的充分条件是界面存在较强的相互作用和样品的缓慢冷却,提出了横晶形成机理,并推断横晶的形成会导致玻璃纤维与聚丙烯树脂界面结合强度的明显下降。用观测以的横晶与基体球晶的冲击线进一步证实了横晶形成机理。  相似文献   

8.
采用压延成张工艺制备碳纤维和玻璃纤维混杂增强非石棉橡胶基密封复合材料(NAFC),以横向抗拉强度作为表征混杂增强橡胶基密封材料中纤维与橡胶界面粘结性能的指标.通过扫描电镜(SEM)对材料横向拉伸试样断口进行形貌分析,及对材料的耐油、耐酸、耐碱性能进行测试,探讨了不同表面处理工艺对纤维与基体界面粘结效果的影响.研究结果表明,对玻璃纤维采用偶联剂KH550浸渍后涂覆环氧树脂涂层,对碳纤维在空气氧化后涂覆环氧树脂涂层,可有效增强纤维、基体的界面粘结,所制得的混杂纤维增强复合材料具有较好的机械性能和耐介质性能.  相似文献   

9.
将不同配比的高黏度聚丙烯与低黏度聚丙烯共混制备高低黏度树脂混配基体,旋转流变测试结果显示低黏度聚丙烯的加入显著降低了共混体系的黏度。以高低黏度聚丙烯共混物为热塑树脂基体,采用熔融浸渍方法制备连续玻纤增强聚丙烯热塑预浸带。研究发现随着低黏度聚丙烯含量的增加,热塑树脂基体的加工性能明显提高,预浸带制品的孔隙率及纤维断裂率逐渐降低。将各组预浸带模压成型后进行力学测试,结果显示低黏度聚丙烯的加入使层压板层间剪切强度、弯曲强度、拉伸强度均出现小幅度下降,而对冲击强度基本无影响。结合加工性能及力学性能,低黏度聚丙烯质量分数10%时共混物的综合性能最佳。  相似文献   

10.
借助纳米颗粒的高比表面积特性,将纳米二氧化硅通过化学接枝方法修饰玻璃纤维表面,制备玻璃纤维/聚丙烯(PP)热塑复合材料。通过SEM表征纳米二氧化硅在玻璃纤维表面的分布形态,结果表明纳米颗粒在纤维表面分散良好;通过界面剪切强度测试(IFSS)和界面断裂韧性测试(GⅡC)表征复合材料界面的静态力学性能,结果显示材料的界面剪切强度与界面断裂韧性同时获得了较大的提升;动态热机械分析测试(DMA)的结果表明复合材料在动态测试下的综合界面结合性能均得到较大的提升。  相似文献   

11.
玻璃纤维表面光滑且呈化学惰性,聚丙烯缺少极性官能团,导致玻璃纤维与聚丙烯之间的界面润湿性能较差。为了提升玻璃纤维增强聚丙烯(GFRP)复合材料的界面结合性能,设计并搭建了空气等离子体炬处理装置,通过该装置在连续玻璃纤维束表面沉积SiOx纳米颗粒,并测定了改性玻璃纤维的润湿性能和GFRP复合材料的界面剪切强度;采用响应曲面法(RSM)分析了喷嘴与纤维间的距离、载气流量、处理时间对玻璃纤维润湿性能的影响,并对这些工艺参数进行了优化。结果表明:当处理距离为20 mm、载气流量为1.5 L/min、处理时间为6 s时,与对照组相比,改性后的玻璃纤维与聚丙烯的接触角降低了49.8%,GFRP复合材料的界面剪切强度提高了94.7%;载气流量对玻璃纤维润湿性能的影响程度最大,处理时间次之,处理距离的影响最小。优化后的工艺参数为:喷嘴与纤维间的距离为18 mm,载气流量为1.7 L/min,处理时间为7 s。在此工艺条件下制备了空气等离子体炬改性的玻璃纤维,实测的接触角(24.6°)与预测值(25.0°)之间的偏差仅为1.6%。  相似文献   

12.
玻璃纤维表面光滑且呈化学惰性,聚丙烯缺少极性官能团,导致玻璃纤维与聚丙烯之间的界面润湿性能较差。为了提升玻璃纤维增强聚丙烯(GFRP)复合材料的界面结合性能,设计并搭建了空气等离子体炬处理装置,通过该装置在连续玻璃纤维束表面沉积SiOx纳米颗粒,并测定了改性玻璃纤维的润湿性能和GFRP复合材料的界面剪切强度;采用响应曲面法(RSM)分析了喷嘴与纤维间的距离、载气流量、处理时间对玻璃纤维润湿性能的影响,并对这些工艺参数进行了优化。结果表明:当处理距离为20 mm、载气流量为1.5 L/min、处理时间为6 s时,与对照组相比,改性后的玻璃纤维与聚丙烯的接触角降低了49.8%,GFRP复合材料的界面剪切强度提高了94.7%;载气流量对玻璃纤维润湿性能的影响程度最大,处理时间次之,处理距离的影响最小。优化后的工艺参数为:喷嘴与纤维间的距离为18 mm,载气流量为1.7 L/min,处理时间为7 s。在此工艺条件下制备了空气等离子体炬改性的玻璃纤维,实测的接触角(24.6°)与预测值(25.0°)之间的偏差仅为1.6%。  相似文献   

13.
在环氧树脂乳液中分别加入了3,3′-二甲基-4,4′-二氨基二环己基甲烷(DMDC)和7k型水溶性胺类固化剂,以提高碳纤维上胶剂的集束性。研究了固化剂用量、种类对上胶剂稳定性、集束性及复合材料界面粘接性能的影响。采用离心沉降法评价了上胶剂的稳定性,通过傅立叶红外光谱(FT-IR)和扫描电子显微镜(SEM)分析了上胶剂的化学结构和复合材料的破坏断口。结果显示,7k型水溶性固化剂可以提高环氧树脂乳液的稳定性,明显改善碳纤维的集束性,同时提高碳纤维与环氧648基体树脂间的界面粘接性能,使复合材料的层间剪切强度(ILSS)从77MPa提高到86.5MPa。  相似文献   

14.
研究了不同黏度聚丙烯熔体的表观黏度与切变速率、温度之间的关系,并比较了不同黏度聚丙烯熔体制得的皮芯型纺黏纤维的力学性能和结构。结果表明:随着温度的升高,黏度越大的聚丙烯熔体的表观黏度减小速率越快;随着切变速率的加快,熔体的表观黏度不断减小。在相同的纺黏工艺条件下,低黏度的聚丙烯熔体制得的皮芯型纤维更细,断裂强度更小;与机械牵伸工艺相比,聚丙烯复合纤维的解取向程度改变不明显,黏度越小的聚丙烯复合纤维取向度和结晶度越大。采用不同黏度聚丙烯熔体制备的皮芯型纺黏纤维,仅部分纤维截面会呈现皮芯型结构。  相似文献   

15.
采用纳米材料增加碳纤维(CF)的表面粗糙度及活性官能团,不仅可以改善CF增强复合材料的界面结合状态,而且不会对CF本体造成损伤,是一种极具发展潜力的新型CF表面改性手段。使用电泳沉积技术(EPD)将碳纳米管(CNTs)沉积在高模CF表面,然后与环氧树脂(EP)复合,制备了单向纤维增强层压板(CF/EP复合材料)。使用万能拉力机测试CF/EP复合材料的层间剪切强度(ILSS),结果表明,在电压为6 V时制备的CF/EP复合材料的ILSS为58.9 MPa,与未经EPD处理的CF/EP复合材料(ILSS=52.2 MPa)相比提高了12.8%。同时,通过EPD制备了海藻酸钠与CNTs共沉积修饰的高模CF,海藻酸钠的加入增加了CNTs与CF表面的黏附性及氧含量,提高了纤维表面对树脂基体的浸润性。当CNTs的质量浓度为0.3 mg/mL、海藻酸钠的质量浓度为1 mg/mL、EPD电压为8 V时,所制备的CF/EP复合材料的ILSS可达68.3 MPa,与未经EPD处理的CF/EP复合材料相比提高了30.8%。  相似文献   

16.
采用纳米材料增加碳纤维(CF)的表面粗糙度及活性官能团,不仅可以改善CF增强复合材料的界面结合状态,而且不会对CF本体造成损伤,是一种极具发展潜力的新型CF表面改性手段。使用电泳沉积技术(EPD)将碳纳米管(CNTs)沉积在高模CF表面,然后与环氧树脂(EP)复合,制备了单向纤维增强层压板(CF/EP复合材料)。使用万能拉力机测试CF/EP复合材料的层间剪切强度(ILSS),结果表明,在电压为6 V时制备的CF/EP复合材料的ILSS为58.9 MPa,与未经EPD处理的CF/EP复合材料(ILSS=52.2 MPa)相比提高了12.8%。同时,通过EPD制备了海藻酸钠与CNTs共沉积修饰的高模CF,海藻酸钠的加入增加了CNTs与CF表面的黏附性及氧含量,提高了纤维表面对树脂基体的浸润性。当CNTs的质量浓度为0.3 mg/mL、海藻酸钠的质量浓度为1 mg/mL、EPD电压为8 V时,所制备的CF/EP复合材料的ILSS可达68.3 MPa,与未经EPD处理的CF/EP复合材料相比提高了30.8%。  相似文献   

17.
通过测定,得出马来酸酐改性聚丙烯(MPP)是提高玻璃纤维与聚丙烯树脂界面剪切强度的关键因素,而偶联剂的变化对体系界面剪切强度的影响较少,用仪器分析证实了酸酐基团与玻璃纤维表面发生化学反应的实质,以及当界面存在改性聚丙烯时,应选择A-174TM硅烷偶联剂处理增强聚丙烯的玻璃纤维,而不是传统的A-1100TM硅烷偶联剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号