首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Significance of enamel thickness in hominoid evolution   总被引:6,自引:0,他引:6  
L Martin 《Nature》1985,314(6008):260-263
Enamel thickness has assumed unique importance in the debate about the hominid status of Ramapithecus, despite the fact that there is little agreement about the meaning of 'thick enamel' or the significance of enamel thickness for hominoid taxonomy. My aim here is to evaluate the usefulness of enamel thickness and microstructure as characteristics for determining the relationships of the later Miocene hominoids, based both on a quantitative study of enamel thickness in extant hominoids and four species of later Miocene Sivapithecus (including 'Ramapithecus') and on scanning electron microscope analysis of enamel microstructure. Four categories of enamel thickness are defined metrically here and have been related to enamel microstructure and developmental rates. Thin fast-formed (pattern 3) enamel represents the ancestral condition in hominoids; it increased developmentally to thick pattern 3 enamel in the great ape and human clade and that condition is primitively retained in Homo and in the fossil hominoid Sivapithecus (including 'Ramapithecus'). Enamel thickness has been secondarily reduced in the African apes and also, although at a different rate and extent, in the orang-utan. Thick enamel, previously the most important characteristic in arguments about the earliest hominid, does not therefore identify a hominid.  相似文献   

2.
Late Miocene hominids from the Middle Awash, Ethiopia.   总被引:8,自引:0,他引:8  
Y Haile-Selassie 《Nature》2001,412(6843):178-181
Molecular studies suggest that the lineages leading to humans and chimpanzees diverged approximately 6.5-5.5 million years (Myr) ago, in the Late Miocene. Hominid fossils from this interval, however, are fragmentary and of uncertain phylogenetic status, age, or both. Here I report new hominid specimens from the Middle Awash area of Ethiopia that date to 5.2-5.8 Myr and are associated with a wooded palaeoenvironment. These Late Miocene fossils are assigned to the hominid genus Ardipithecus and represent the earliest definitive evidence of the hominid clade. Derived dental characters are shared exclusively with all younger hominids. This indicates that the fossils probably represent a hominid taxon that postdated the divergence of lineages leading to modern chimpanzees and humans. However, the persistence of primitive dental and postcranial characters in these new fossils indicates that Ardipithecus was phylogenetically close to the common ancestor of chimpanzees and humans. These new findings raise additional questions about the claimed hominid status of Orrorin tugenensis, recently described from Kenya and dated to approximately 6 Myr.  相似文献   

3.
Primate eta-globin DNA sequences and man's place among the great apes   总被引:22,自引:0,他引:22  
B F Koop  M Goodman  P Xu  K Chan  J L Slightom 《Nature》1986,319(6050):234-238
Molecular studies indicate that chimpanzee and gorilla are the closest relatives of man (refs 1-7 and refs therein). The small molecular distances found point to late ancestral separations, with the most recent being between chimpanzee and man, as judged by DNA hybridization. Kluge and Schwartz contest these conclusions: morphological characters group a chimpanzee-gorilla clade with the Asian ape orang-utan in Kluge's cladistic study and with an orang-utan-human clade in Schwartz's study. Clearly, extensive sequencing of nuclear DNA is needed to resolve by cladistic analysis the branching order within Hominoidea. Towards this goal, we are sequencing orthologues of the primate psi eta-globin locus. Here, we compare the newly completed sequences of orang-utan and rhesus monkey with human, chimpanzee, gorilla, owl monkey, lemur and goat orthologues. Our findings substantially increase the evidence indicative of a human-chimpanzee-gorilla clade with ancestral separations around 8 to 6 Myr ago. We also verify that neutral hominoid DNA evolved at markedly retarded rates.  相似文献   

4.
The search for the earliest fossil evidence of the human lineage has been concentrated in East Africa. Here we report the discovery of six hominid specimens from Chad, central Africa, 2,500 km from the East African Rift Valley. The fossils include a nearly complete cranium and fragmentary lower jaws. The associated fauna suggest the fossils are between 6 and 7 million years old. The fossils display a unique mosaic of primitive and derived characters, and constitute a new genus and species of hominid. The distance from the Rift Valley, and the great antiquity of the fossils, suggest that the earliest members of the hominid clade were more widely distributed than has been thought, and that the divergence between the human and chimpanzee lineages was earlier than indicated by most molecular studies.  相似文献   

5.
Tavaré S  Marshall CR  Will O  Soligo C  Martin RD 《Nature》2002,416(6882):726-729
Divergence times estimated from molecular data often considerably predate the earliest known fossil representatives of the groups studied. For the order Primates, molecular data calibrated with various external fossil dates uniformly suggest a mid-Cretaceous divergence from other placental mammals, some 90 million years (Myr) ago, whereas the oldest known fossil primates are from the basal Eocene epoch (54-55 Myr ago). The common ancestor of primates should be earlier than the oldest known fossils, but adequate quantification is needed to interpret possible discrepancies between molecular and palaeontological estimates. Here we present a new statistical method, based on an estimate of species preservation derived from a model of the diversification pattern, that suggests a Cretaceous last common ancestor of primates, approximately 81.5 Myr ago, close to the initial divergence time inferred from molecular data. It also suggests that no more than 7% of all primate species that have ever existed are known from fossils. The approach unites all the available palaeontological methods of timing evolutionary events: the fossil record, extant species and clade diversification models.  相似文献   

6.
Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.  相似文献   

7.
A Jurassic eutherian mammal and divergence of marsupials and placentals   总被引:2,自引:0,他引:2  
Luo ZX  Yuan CX  Meng QJ  Ji Q 《Nature》2011,476(7361):442-445
Placentals are the most abundant mammals that have diversified into every niche for vertebrates and dominated the world's terrestrial biotas in the Cenozoic. A critical event in mammalian history is the divergence of eutherians, the clade inclusive of all living placentals, from the metatherian-marsupial clade. Here we report the discovery of a new eutherian of 160?Myr from the Jurassic of China, which extends the first appearance of the eutherian-placental clade by about 35?Myr from the previous record, reducing and resolving a discrepancy between the previous fossil record and the molecular estimate for the placental-marsupial divergence. This mammal has scansorial forelimb features, and provides the ancestral condition for dental and other anatomical features of eutherians.  相似文献   

8.
Richmond BG  Strait DS 《Nature》2000,404(6776):382-385
Bipedalism has traditionally been regarded as the fundamental adaptation that sets hominids apart from other primates. Fossil evidence demonstrates that by 4.1 million years ago, and perhaps earlier, hominids exhibited adaptations to bipedal walking. At present, however, the fossil record offers little information about the origin of bipedalism, and despite nearly a century of research on existing fossils and comparative anatomy, there is still no consensus concerning the mode of locomotion that preceded bipedalism. Here we present evidence that fossils attributed to Australopithecus anamensis (KNM-ER 20419) and A. afarensis (AL 288-1) retain specialized wrist morphology associated with knuckle-walking. This distal radial morphology differs from that of later hominids and non-knuckle-walking anthropoid primates, suggesting that knuckle-walking is a derived feature of the African ape and human clade. This removes key morphological evidence for a Pan-Gorilla clade, and suggests that bipedal hominids evolved from a knuckle-walking ancestor that was already partly terrestrial.  相似文献   

9.
Discoveries in Chad by the Mission Paleoanthropologique Franco-Tchadienne have substantially changed our understanding of early human evolution in Africa. In particular, the TM 266 locality in the Toros-Menalla fossiliferous area yielded a nearly complete cranium (TM 266-01-60-1), a mandible, and several isolated teeth assigned to Sahelanthropus tchadensis and biochronologically dated to the late Miocene epoch (about 7 million years ago). Despite the relative completeness of the TM 266 cranium, there has been some controversy about its morphology and its status in the hominid clade. Here we describe new dental and mandibular specimens from three Toros-Menalla (Chad) fossiliferous localities (TM 247, TM 266 and TM 292) of the same age. This new material, including a lower canine consistent with a non-honing C/P3 complex, post-canine teeth with primitive root morphology and intermediate radial enamel thickness, is attributed to S. tchadensis. It expands the hypodigm of the species and provides additional anatomical characters that confirm the morphological differences between S. tchadensis and African apes. S. tchadensis presents several key derived features consistent with its position in the hominid clade close to the last common ancestor of chimpanzees and humans.  相似文献   

10.
Earliest Homo.     
A Hill  S Ward  A Deino  G Curtis  R Drake 《Nature》1992,355(6362):719-722
The origin of our own genus, Homo, has been tentatively correlated with worldwide climatic cooling documented at about 2.4 Myr (million years). It has also been conjectured that members of Homo made the first stone tools, currently dated at 2.6-2.4 Myr. But fossil specimens clearly attributable to Homo before about 1.9 Myr have been lacking. In 1967 a fossil hominoid temporal bone (KNM-BC1) from the Chemeron Formation of Kenya was described as family Hominidae gen. et sp. indet. Although a surface find, its provenance within site JM85 (BPRP site K002) was established and a stratigraphic section provided indicating the specimen's position. This evidence has been affirmed but the exact age of the fossil was never determined, and the absence of suitable comparative hominid material has precluded a more definitive taxonomic assignment. Here we present 40Ar/39Ar age determinations on material from the hominid site indicating an age of 2.4 Myr. In addition, comparative studies allow us to assign KNM-BC1 to the genus Homo, making it the earliest securely known fossil of our own genus found so far.  相似文献   

11.
UPGMA法,近邻关系法,及最节省法等证明,人类与黑猩猩属于同一进化枝,人类起源的年代远远短于原来的估计.  相似文献   

12.
Patterns and rates of enamel growth in the molar teeth of early hominids   总被引:3,自引:0,他引:3  
A D Beynon  B A Wood 《Nature》1987,326(6112):493-496
A recent study of the surface manifestation of incremental lines associated with enamel formation suggested that the crowns of early hominid incisor teeth were formed more rapidly than those of modern humans. In the absence of comparative data, the authors were forced to assume that enamel increments in fossil teeth were similar to those in modern humans. We have used evidence from the fractured surfaces of molar teeth to deduce estimates for both long- and short-period incremental growth markers within enamel in east African 'robust' australopithecine and early Homo teeth. We conclude that in these early hominids, crown formation times in posterior teeth, particularly in the large thick enamelled molar teeth of the east African 'robust' australopithecines, were shorter than those of modern humans. This evidence, considered together with data on crown and root formation times in modern apes, suggests that the posterior teeth in these hominids both formed and erupted more rapidly than those of modern man. These results have implications for attempts to assess dental and skeletal maturity in hominids.  相似文献   

13.
After terrestrialization, the diversification of arthropods and vertebrates is thought to have occurred in two distinct phases, the first between the Silurian and the Frasnian stages (Late Devonian period) (425-385?million years (Myr) ago), and the second characterized by the emergence of numerous new major taxa, during the Late Carboniferous period (after 345?Myr ago). These two diversification periods bracket the depauperate vertebrate Romer's gap (360-345?Myr ago) and arthropod gap (385-325?Myr ago), which could be due to preservational artefact. Although a recent molecular dating has given an age of 390?Myr for the Holometabola, the record of hexapods during the Early-Middle Devonian (411.5-391?Myr ago, Pragian to Givetian stages) is exceptionally sparse and based on fragmentary remains, which hinders the timing of this diversification. Indeed, although Devonian Archaeognatha are problematic, the Pragian of Scotland has given some Collembola and the incomplete insect Rhyniognatha, with its diagnostic dicondylic, metapterygotan mandibles. The oldest, definitively winged insects are from the Serpukhovian stage (latest Early Carboniferous period). Here we report the first complete Late Devonian insect, which was probably a terrestrial species. Its 'orthopteroid' mandibles are of an omnivorous type, clearly not modified for a solely carnivorous diet. This discovery narrows the 45-Myr gap in the fossil record of Hexapoda, and demonstrates further a first Devonian phase of diversification for the Hexapoda, as in vertebrates, and suggests that the Pterygota diversified before and during Romer's gap.  相似文献   

14.
Evolution and environment in the Hominoidea.   总被引:11,自引:0,他引:11  
P Andrews 《Nature》1992,360(6405):641-646
Between 10 and 20 million years ago, a variety of hominoid primates lived in Africa, Europe and Asia. The question of which of these, if any, lie closest to the ancestries of humans and modern apes remains a lively source of debate. Recent fossil discoveries, though, shed light on the environments in which the various groups of hominoid emerged and, it is hoped, on their evolution. But the lack of a hominid fossil record before about 5 million years ago--and any fossil record for the African apes--is still a frustrating barrier.  相似文献   

15.
A fossil owl monkey from La Venta, Colombia   总被引:1,自引:0,他引:1  
T Setoguchi  A L Rosenberger 《Nature》1987,326(6114):692-694
Knowledge of the evolutionary history of living New World anthropoids is limited by a relatively poor fossil record. The discovery in 1986 of a new fossil monkey from the middle Miocene deposits of La Venta, Colombia, 12-15 million years ago (Myr BP), is the first example of a living New World monkey genus appearing in Tertiary rocks. Including anatomical evidence of the dentition and facial skull, it provides an unambiguous link between a Neogene fossil and the owl monkey, Aotus, the only modern crepuscular-nocturnal anthropoid primate. This new form brings to three the number of La Venta fossil monkeys which preserve excellent dentitions sharing extensive similarities with modern genera. All of these species are potentially ancestral to their extant relatives. The La Ventan Aotus is additional support for the idea that the modern platyrrhine radiation includes long-lived genera or generic lineages, some of which may be traceable to the early Miocene, 20 Myr BP.  相似文献   

16.
Ramírez SR  Gravendeel B  Singer RB  Marshall CR  Pierce NE 《Nature》2007,448(7157):1042-1045
Since the time of Darwin, evolutionary biologists have been fascinated by the spectacular adaptations to insect pollination exhibited by orchids. However, despite being the most diverse plant family on Earth, the Orchidaceae lack a definitive fossil record and thus many aspects of their evolutionary history remain obscure. Here we report an exquisitely preserved orchid pollinarium (of Meliorchis caribea gen. et sp. nov.) attached to the mesoscutellum of an extinct stingless bee, Proplebeia dominicana, recovered from Miocene amber in the Dominican Republic, that is 15-20 million years (Myr) old. This discovery constitutes both the first unambiguous fossil of Orchidaceae and an unprecedented direct fossil observation of a plant-pollinator interaction. By applying cladistic methods to a morphological character matrix, we resolve the phylogenetic position of M. caribea within the extant subtribe Goodyerinae (subfamily Orchidoideae). We use the ages of other fossil monocots and M. caribea to calibrate a molecular phylogenetic tree of the Orchidaceae. Our results indicate that the most recent common ancestor of extant orchids lived in the Late Cretaceous (76-84 Myr ago), and also suggest that the dramatic radiation of orchids began shortly after the mass extinctions at the K/T boundary. These results further support the hypothesis of an ancient origin for Orchidaceae.  相似文献   

17.
The Middle Awash study area of Ethiopia's Afar rift has yielded abundant vertebrate fossils (approximately 10,000), including several hominid taxa. The study area contains a long sedimentary record spanning Late Miocene (5.3-11.2 Myr ago) to Holocene times. Exposed in a unique tectonic and volcanic transition zone between the main Ethiopian rift (MER) and the Afar rift, sediments along the western Afar rift margin in the Middle Awash provide a unique window on the Late Miocene of Ethiopia. These deposits have now yielded the earliest hominids, described in an accompanying paper and dated here to between 5.54 and 5.77 Myr. These geological and palaeobiological data from the Middle Awash provide fresh perspectives on hominid origins and early evolution. Here we show that these earliest hominids derive from relatively wet and wooded environments that were modulated by tectonic, volcanic, climatic and geomorphic processes. A similar wooded habitat also has been suggested for the 6.0 Myr hominoid fossils recently recovered from Lukeino, Kenya. These findings require fundamental reassessment of models that invoke a significant role for global climatic change and/or savannah habitat in the origin of hominids.  相似文献   

18.
McBrearty S  Jablonski NG 《Nature》2005,437(7055):105-108
There are thousands of fossils of hominins, but no fossil chimpanzee has yet been reported. The chimpanzee (Pan) is the closest living relative to humans. Chimpanzee populations today are confined to wooded West and central Africa, whereas most hominin fossil sites occur in the semi-arid East African Rift Valley. This situation has fuelled speculation regarding causes for the divergence of the human and chimpanzee lineages five to eight million years ago. Some investigators have invoked a shift from wooded to savannah vegetation in East Africa, driven by climate change, to explain the apparent separation between chimpanzee and human ancestral populations and the origin of the unique hominin locomotor adaptation, bipedalism. The Rift Valley itself functions as an obstacle to chimpanzee occupation in some scenarios. Here we report the first fossil chimpanzee. These fossils, from the Kapthurin Formation, Kenya, show that representatives of Pan were present in the East African Rift Valley during the Middle Pleistocene, where they were contemporary with an extinct species of Homo. Habitats suitable for both hominins and chimpanzees were clearly present there during this period, and the Rift Valley did not present an impenetrable barrier to chimpanzee occupation.  相似文献   

19.
A R Hughes  P V Tobias 《Nature》1977,265(5592):310-312
A skull with numerous Homo features was discovered at Sterkfontein, near Krugersdorp, Transvaal, in August 1976. It stems from member 5 of the Sterkfontein Formation, with stone tools and with fauna pointing to an age of 2.0-1.5 Myr. The underlying member 4 contains Australopithecus africanus, no stone tools, and fauna dated 3.0-2.5 Myr. The new find supports the view that the Sterkfontein toolmaker was not the earlier A. africanus, but a later hominid related to Homo habilis. By a remarkable double coincidence, the first pieces of the new skull, Stw 53, were found on August 9, 1976, 40 years to the day after Robert Broom's first visit to Sterkfontein, while the last part came to light on August 17, the 40th anniversary of Broom's first discovery of a hominid cranium at Sterkfontein. Although most of the fragments were found in a decalcified pocket of cave earth, one large part of the calvaria was still present in the calcified wall of the pocket, thus establishing indisputably the provenance of the specimen.  相似文献   

20.
Steinberger B  Torsvik TH 《Nature》2008,452(7187):620-623
The motion of continents relative to the Earth's spin axis may be due either to rotation of the entire Earth relative to its spin axis--true polar wander--or to the motion of individual plates. In order to distinguish between these over the past 320 Myr (since the formation of the Pangaea supercontinent), we present here computations of the global average of continental motion and rotation through time in a palaeomagnetic reference frame. Two components are identified: a steady northward motion and, during certain time intervals, clockwise and anticlockwise rotations, interpreted as evidence for true polar wander. We find approximately 18 degrees anticlockwise rotation about 250-220 Myr ago and the same amount of clockwise rotation about 195-145 Myr ago. In both cases the rotation axis is located at about 10-20 degrees W, 0 degrees N, near the site that became the North American-South American-African triple junction at the break-up of Pangaea. This was followed by approximately 10 degrees clockwise rotation about 145-135 Myr ago, followed again by the same amount of anticlockwise rotation about 110-100 Myr ago, with a rotation axis in both cases approximately 25-50 degrees E in the reconstructed area of North Africa and Arabia. These rotation axes mark the maxima of the degree-two non-hydrostatic geoid during those time intervals, and the fact that the overall net rotation since 320 Myr ago is nearly zero is an indication of long-term stability of the degree-two geoid and related mantle structure. We propose a new reference frame, based on palaeomagnetism, but corrected for the true polar wander identified in this study, appropriate for relating surface to deep mantle processes from 320 Myr ago until hotspot tracks can be used (about 130 Myr ago).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号