首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
采用K—ε湍流模型、SIMPLER方法对JS-2燃煤磁流体燃烧室的冷态流场进行了数值计算,并做了一系列冷模试验研究。通过对几种不同结构燃烧室的计算与测量所得出的流场的分析比较,提出了一些改进JS-2燃煤磁流体燃烧室的建议,最后对计算与测量方法进行了讨论。  相似文献   

2.
一种拓宽微型单管燃烧室流量范围的调节装置   总被引:1,自引:0,他引:1  
为了能够拓宽微型单管燃烧室稳定燃烧的流量范围,设计了一种调节装置.利用CFD软件Fluent对微型单管燃烧室的内部冷态流场进行数值模拟,得到微型单管燃烧室主要结构参数对内部流场形态的影响规律并确定了其主要结构参数.通过冷态数值模拟,得到了调节装置对微型单管燃烧室内部流场的调节作用;通过试验研究,证明所设计的调节装置能够实现对单管燃烧室的稳定燃烧流量进行调节,从而扩大了该燃烧室的稳定燃烧流量范围.  相似文献   

3.
微型环形燃烧室数值模拟及优化设计   总被引:4,自引:0,他引:4  
为了优化微型环形燃烧室的设计方案,利用流体分析软件Fluent,采用RNGk-ε双方程湍流模型分别对两个微型环形燃烧室的内部流场进行了三维的冷态数值模拟,得出了它们的内部流场分布。两个模型分别是采用了航空发动机大型燃烧室设计理论及公式设计而成的燃烧室模型,和已经在实际中成功应用的国外某型微型涡喷发动机燃烧室模型。该文分析两个模型各燃区内计算流场的差异,确定了满足设计性能要求的目标流场,并对原有设计参数进行局部调整,使其流场组织向目标流场靠近。通过此方法,确定了燃烧室优化后的设计参数。  相似文献   

4.
根据燃气涡轮增压系统结构要求,提出了一种新型滚流回流燃烧室结构,通过CFD数值模拟,研究其内部温度场和出口温度分布情况,确定了燃烧室的主要结构参数.采用粒子图像测速仪(PIV)测量燃烧室内筒头部的冷态流场,证明燃烧室头部存在滚流回流区,能够形成稳定的火焰区.在燃烧试验中,进行了贫油点火和贫油熄火试验研究.结果表明在一定流量范围内,文中燃烧室贫油点火及贫油熄火油气比均随进口马赫数的增大而增大;将文中燃烧室与外形尺寸相近的旋流进气燃烧室的总压恢复系数对比,结果表明相同的流量下文中燃烧室的总压恢复系数平均提高约2%.   相似文献   

5.
为考察联焰稳流器对驻涡燃烧室的流场和性能的影响,应用高端数字样机系统进行了设计和数值计算。在典型驻涡燃烧室三维模型上添加了联焰稳流器,分析了2个燃烧室模型在不同进口马赫数条件下的冷态流场结构和总压损失。选取进口马赫数为0.2的工况,对2个模型的燃烧流场进行对比,分析了联焰稳流器对燃烧室性能的影响。结果表明:驻涡燃烧室的NOx排放低于普通构型燃烧室;添加联焰稳流器后,驻涡区能更好地实现与主流区的物质交换,避免因主流速度过快,切断驻涡区与主流区的能量传递;燃烧效率从97%提高至99%,出口温度分布系数从0.92降为0.49;2个模型各冷态工况的总压损失也分别增加2%~12%。  相似文献   

6.
燃气轮机燃烧室流场的数值计算与实验研究   总被引:1,自引:0,他引:1  
本文阐述了以 SIMPLE 算法为基础的燃气轮机燃烧室流场的数值计算方法,对一实例燃烧室作了计算并与冷态实验进行对比。结果表明:回流区的主要尺寸两者数值相当吻合;轴向与切向速度分布规律也是接近的,只是在数值上略有差别。本计算方法在预测燃烧室流场上具有一定的实用价值。  相似文献   

7.
为提高微粒捕集器喷油助燃再生用燃烧器的点火和稳焰能力,基于课题组前期设计的轴流式直叶片旋流器供风系统,引入凹腔稳焰器、导流片、尾气双圆管等典型结构,提出两种燃烧器模型,并采用冷态流场数值计算对两种燃烧器模型进行分析,以中心回流区和尾气燃烧室的回流为依据,研究模型内旋涡位置和大小的流场特性。对比分析得出:带凹腔稳焰器的导流片式旋流燃烧器的点火和稳焰性能优越,其中尾气管为双圆管对称射流的模型A比尾气管为双圆管切向旋流的模型B更适用于微粒捕集器再生用燃烧室的设计需求。  相似文献   

8.
运用超大涡模拟(VLES)方法对燃烧室冷态流场开展了数值模拟,研究流场中大尺度涡旋结构.选取圆管内有旋流动为基准算例开展数值模拟研究,与实验结果的比较验证了VLES方法的精度.计算结果表明,燃烧室内回流区形状合理.燃烧室中大孔射流与横向来流的相互作用形成了反向旋转涡对结构,Rothstein提出的射流迹线公式能够合理预测主燃孔的射流穿透.进动涡核(PVC)发源于燃烧室头部旋流器装置内部,基于功率谱密度预测了PVC引发流场振荡的特征频率.  相似文献   

9.
将涡扇发动机加力燃烧室冷态流场的计算结果与实验数据进行比较,发现若进口速度分布采用实验值,则计算结果与实验值符合得相当好.然后,着重研究V型槽稳焰器的安放位置对流场的影响,并整理成准则形式,为实际V型槽在加力燃烧室中最佳安放位置提供了参考依据.  相似文献   

10.
研究了带有屏式受热面的大型锅炉炉内等温流场的数学模拟方法,利用空度概念及其数值方法对HG-2008-YM2型锅炉的冷态模型进行了计算,并与实验结果进行了比较,计算结果与实验值吻合较好.  相似文献   

11.
基于欧拉气相方程组、欧拉颗粒连续方程和动量方程以及拉氏颗粒能量和质量变化方程,建立并发展了高炉风口回旋区湍流气固两相流动和煤粉燃烧的三维数学模型.用所建模型分别对冷态模型内气固两相流动和某企业750 m3高炉风口回旋区内的气固两相三维流动与煤粉燃烧进行了数值模拟.采用三维激光相位多普勒分析仪(PDA)对冷态模型内气固两相流场进行了测量,实验结果与冷态两相流动的模拟结果基本一致.热态模拟结果给出了气相温度和组分浓度分布,模拟结果与实验测量结果较吻合,揭示了风口回旋区内气固两相流动和煤粉燃烧的基本性质和特点.  相似文献   

12.
为了更准确地描述煤粒瓦斯的放散过程,设计了有限空间内煤粒瓦斯放散实验.实验结果表明瓦斯累积放散量倒数与时间n次方倒数成线性关系,且拟合度达到0.99以上,由此得出了煤粒瓦斯的放散模型.以达西定律为基础,构建了有限空间内瓦斯放散数学模型,采用有限差分编程解算,得到了与实验对应压力下,瓦斯流动过程中累积放散量及放散速度随时间的变化规律.通过对比分析,理论上验证了煤粒瓦斯放散模型的准确性,模拟结果与实验结果较好的吻合也进一步证实了瓦斯在煤粒中的流动符合达西定律.   相似文献   

13.
利用粒子成像测速仪PIV对水泥生产中回转窑冷态模型内四通道燃烧器出口附近的流场进行测量,考察不同的轴流风、旋流风、煤风和中心风之间的比例关系对流场的影响作用,分析了四种不同工况下的燃烧器出口的流场特性.结果表明轴流风和旋流风速度对燃烧器形成的射流场影响最显著.其中轴流风促进内部回流区的形成,旋流风减弱内回流区的形成,但能够加强流体和煤粉的充分混合,避免煤粉燃烧时局部高温区的形成.因此适当增加轴流风量和旋流风量可以起到降低烟气中的NOx含量的作用.  相似文献   

14.
喷动流化床气固流动特性的三维数值模拟   总被引:3,自引:1,他引:2  
采用离散元方法(DEM),在用欧拉方法处理气相场的同时用拉格朗日方法处理离散颗粒场,对喷动流化床煤部分气化炉内的气固流动进行了三维数值模拟.直接跟踪床内每一个离散颗粒,考虑了碰撞力、携带力、重力、剪切提升力和Magnus升力,颗粒碰撞采用软球模型.获得了喷动流化床典型操作参数下的流动结构、颗粒的受力、颗粒的速度分布、气体和颗粒的湍流强度等结果.结果表明,颗粒之间碰撞率随着喷动气速的增大而增大,随粒径的增大而减小,然而颗粒与壁面的碰撞率受喷动气速和粒径的影响不明显.颗粒的运动受重力、携带力和碰撞力主导,除喷动区与环形区交界外,Magnus力和Saffman力可以忽略.气体湍流强度是颗粒湍流强度的2~3倍,近壁面区的气体和颗粒的湍流强度均较小.  相似文献   

15.
以装有150kW等离子体发生器的某等离子体点火试验燃烧器为例,应用数值模拟的方法对等离子体点火燃烧器的稳燃性能进行了研究,并提出了一种新型的径向/切向进风等离子体点火燃烧筒.研究结果表明,一次风速(风粉气流流速)、等离子体气流的穿透区域和煤粉浓度等是影响等离子体点火过程及煤粉着火燃烧的主要因素.径向/切向进风可以在燃烧筒内形成多向回流和旋流,使得风粉气流在燃烧筒内不仅有轴向速度,而且还有径向和切向速度,改变了轴向进风气流运动的单一性,增加了煤粉气流在筒内的停留时间,着火区域扩大,火焰充满度好,有利于燃烧筒内的稳燃.  相似文献   

16.
采用激光多谱勒测速仪对小流量发动机短环直流燃烧室的流场进行测试,并且在三维任意曲线坐标系下对该燃烧室流场进行了数值模拟。通过试验结果和计算结果的对比可以看出,两者在燃烧室出口符合较好,表明流场计算程序是可靠的,为了全面地反映燃烧室中的真实流动状况,对燃烧室和旋流器的流场进行整体计算。  相似文献   

17.
利用粉粒光电分光器对等直径喷嘴中粉粒速度进行了实验研究,在实验的基础上,提出了用实测喷嘴内初始运动参数和出口压强确定喷嘴内粉粒初始速度的方法,结果表明,喷嘴内粉粒速度的计算结果同实测结果基本一致。  相似文献   

18.
本文对粗湿颗粒在循环流化床中干燥过程的传热传质规律作了实验研究。在不同的表现流速、固体循环率、初始湿含量和颗粒粒径下,沿床高测量了气固相的局部温度,分析和讨论了各种流化参数对传热传质的影响,对粗湿颗粒(Geldart’B类)循环床提出了一些观点,由此建立的无因次准则方程与实验值吻合较好。  相似文献   

19.
阐述内燃机缸内冷态湍流流动和传热的一种二维数学模型,即用数值方法求解控制缸内气体流动和传热的一组偏微分方程组,得到缸内流场及温度场,进而求出壁面处温度的变化规律.计算是基于控制容积法,采用可在轴向伸缩变化的轴对称动坐标系.在压力较正方程和K-ε湍流模型中均考虑了流体的压缩性效应,旋流也作为因变量之一纳入了计算.对平顶及带凹坑的燃烧室的模拟计算结果与实验数据相吻合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号