首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Astrocytes are a heterogeneous population of cells that are endowed with a great variety of receptors for neurotransmitters and neuromodulators. Recently prostaglandin E2 has attracted great interest since it is not only released by astrocytes but also activates receptors coupled to either phospholipase C or adenylyl cyclase. We report that EP2 receptor stimulation triggers cAMP production but also causes release of Ca2+ from intracellular stores. This effect is shared by other receptors similarly coupled to adenylyl cyclase and elicited by direct stimulation of the enzyme or application of cAMP analogues. However, the stimulation of the Ca2+ response by cAMP is not mediated by protein kinase A, since a specific antagonist of this kinase had no effect. Such a cross-talk between cAMP and Ca2+ was not observed in all astrocytes. It might therefore reflect a specific resource of either a subpopulation or astrocytes in a specific functional state. Received 6 June 2006; received after revision 25 July 2006; accepted 31 August 2006  相似文献   

2.
AggregatingDictyostelium cells secrete cAMP during cell aggregation. cAMP induces two fast responses, the production of more cAMP (relay) and directed cell locomotion (chemotaxis). Extracellular cAMP binds to G-protein-coupled receptors leading to the activation of second messenger pathways, including the activation of adenylyl cyclase, guanylyl cyclase, phospholipase C and the opening of plasma membrane Ca2+ channels. Many genes encoding these sensory transduction proteins have been cloned and null mutants of nearly all components have been characterized in detail. Undoubtedly, activation of adenylyl cyclase is the most complex, involving G-proteins, a soluble protein called CRAC and components of the MAP kinase pathway. Null mutants in this pathway do not aggregate, but can exhibit chemotaxis and develop normally when supplied with exogenous cAMP. The pathways leading to the activation of phospholipase C were identified, but unexpectedly, deletion of the phospholipase C gene has no effect on chemotaxis and development, nor on intracellular Ins(1,4,5)P3 levels; the metabolism of this second messenger will be discussed in some detail. Activation of guanylyl cyclase is G-protein-dependent and essential for chemotaxis. Analysis of a collection of chemotactic mutants reveals that most mutants are defective in either the production or intracellular detection of cGMP, thereby placing this second messenger at the center of chemotactic signal transduction. Analysis of the cAMP-mediated opening of plasma membrane calcium channels in signal transduction mutants suggests that it has two components, one that depends on G-proteins and intracellular cGMP and one that is G-protein-independent.  相似文献   

3.
The Ca2+ ionophore ionomycin induced cytosolic [Ca2+]i elevation as well as strong activation of Cl efflux in mouse mammary epithelial cell lines expressing wild-type or mutated (deletion of phenylalaline 508) cystic fibrosis transmembrane conductance regulator (CFTR) or vector. Ionomycin-induced Cl efflux was abolished by the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, whereas both activators and inhibitors of phospholipase A2 had no effect, indicating the involvement of Ca2+-dependent Cl- channels. Stimulation of arachidonic acid release by ionomycin and phorbol ester was not significantly different between wild-type or mutated cell lines, whereas vector-transfected cells exhibited a significant higher release, which was shown to be due to larger amount of immunoreactive cytosolic phospholipase A2. These results indicate that phospholipase A2 activity of C127 cells was not influenced by the presence of wild-type or mutated CFTR. Received 27 April 1999; received after revision 11 June 1999; accepted 23 July 1999  相似文献   

4.
Guanylate cyclase activating protein 1 (GCAP1) is a neuronal Ca2+ sensor (NCS) that regulates the activation of rod outer segment guanylate cyclases (ROS-GCs) in photoreceptors. In this study, we investigated the Ca2+-induced effects on the conformation and the thermal stability of four GCAP1 variants associated with hereditary human cone dystrophies. Ca2+ binding stabilized the conformation of all the GCAP1 variants independent of myristoylation. The myristoylated wild-type GCAP1 was found to have the highest Ca2+ affinity and thermal stability, whereas all the mutants showed decreased Ca2+ affinity and significantly lower thermal stability in both apo and Ca2+-loaded forms. No apparent cooperativity of Ca2+ binding was detected for any variant. Finally, the nonmyristoylated mutants were still capable of activating ROS-GC1, but the measured cyclase activity was shifted toward high, nonphysiological Ca2+ concentrations. Thus, we conclude that distorted Ca2+-sensor properties could lead to cone dysfunction.  相似文献   

5.
Mammalian oocytes grow and undergo meiosis within ovarian follicles. Fully grown oocytes are arrested at the first meiotic prophase by a mural granulosa origin “arrester” until a surge of luteinizing hormone (LH) from the pituitary at the mid-cycle stimulates the immature oocyte to resume meiosis. Recent evidence indicates that natriuretic peptide precursor type C (NPPC) produced by mural granulosa cells stimulates the generation of cyclic guanosine 3′,5′-monophosphate (cGMP) by cumulus cell natriuretic peptide receptor 2 (NPR2), which diffuses into oocyte via gap junctions and inhibits oocyte phosphodiesterase 3A (PDE3A) activity and cyclic adenosine 3′,5′-monophosphate (cAMP) hydrolysis and maintains meiotic arrest with a high intraoocyte cAMP level. This cAMP is generated through the activity of the Gs G-protein by the G-protein-coupled receptor, GPR3 and GPR12, and adenylyl cyclases (ADCY) endogenous to the oocyte. Further studies suggest that endocrine hormones, such as follicle-stimulating hormone (FSH), LH, 17β-estradiol (E2) and oocyte-derived paracrine factors (ODPFs), participate in oocyte meiosis possibly by the regulation of NPPC and/or NPR2. A detailed investigation of NPPC and NPR2 expression in follicle cells will elucidate the precise molecular mechanisms of gonadotropins, and control the arrest as well as resumption of meiosis.  相似文献   

6.
7.
cAMP plays an essential role duringDictyostelium development both outside and inside the cell. Membrane-bound receptors and adenylyl cyclase are responsible for sensing and producing extracellular cAMP, whereas a phosphodiesterase is responsible for maintaining a low basal level. The molecular events underlying this type of hormone like signalling, which are now beginning to be deciphered, will be presented, in the light of cAMP analogue studies. The importance of intracellular cAMP for cell differentiation has been demonstrated by the central role of the cAMP dependent protein kinase. Mutants as well as strains obtained by reverse genetics will be reviewed which lead to our current understanding of the role of intracellular cAMP in the differentiation of both stalk and spore cells.  相似文献   

8.
Summary A calmodulin stimulated Ca2+-transport ATPase which has many of the characteristics of the erythrocyte type Ca2+-transport ATPase has been purified from smooth muscle. In particular, the effect of calmodulin on these transport enzymes is mimiced by partial proteolysis and antibodies against erythrocyte Ca2+-transport ATPase also bind to the smooth muscle (Ca2++Mg2+)ATPase. A correlation between the distribution of the calmodulin stimulated (Ca2++Mg2+)ATPase and (Na++K+)ATPase activities in smooth muscle membranes separated by density gradient centrifugation suggests a plasmalemmal distribution of this (Ca2++Mg2+)ATPase. A phosphoprotein intermediate in smooth muscle which strongly resembles the corresponding phosphoprotein in sarcoplasmic reticulum of skeletal muscle may indicate the presence in smooth muscle of a similar type of Ca2+-transport ATPase.  相似文献   

9.
Immunological evidence suggests that plants contain natriuretic peptides (NPs) and furthermore (3- [125I]iodotyrosol28) rat atrial NP (rANP) binds specifically to plant membranes. rANP and immunoaffinity-purified plant NP analogues also promote concentration-dependent stomatal opening. Here we report that kinetin, a synthetic cytokinin, and rANP induce stomatal opening in Tradescantia albiflora and that the effect of rANP is critically dependent on the secondary structure of the peptide hormone. The native circular molecule is active, whereas the linearized molecule shows no biological activity. Furthermore, kinetin- and rANP-induced stomatal opening is reversibly inhibited by two in hibitors of guanylate cyclase, LY 83583 and methylene blue. Stomatal opening is also induced in a concentration-dependent manner by the cell-permeant cyclic guanosine-3′,5′-monophosphate (cGMP) analogue 8-Br-cGMP, and this effect is prevented by the stomatal closure promoting plant hormone abscisic acid (ABA). We conclude that in guard cells kinetin and rANP pathways operate via guanylate cyclase upregulation, and we propose that ABA-induced closure is not cGMP-dependent. Received 1 October 1997; received after revision 2 December 1997; accepted 6 January 1998  相似文献   

10.
The present paper studied the effect and mechanism of neurosteroid pregnenolone sulfate (PREGS) on spontaneous glutamate release using electrophysiological and biochemical methods combined with a pharmacological approach. The results suggested that PREGS had a selective enhancing effect on spontaneous glutamate release in the prelimbic cortex and the hippocampus but not in the striatum. The effect of PREGS in the prelimbic cortex appeared to be via modulation of 1-adrenergic and 1 receptors, but in the hippocampus it might be dependent on 1 receptors only. The activation of 1-adrenergic receptors synergized 1 receptor activation in the prelimbic cortex. Intracellular calcium released from the endoplasmic reticulum, protein kinase C, adenylyl cyclase and protein kinase A played a key role in the effect of PREGS. Intracellular calcium, protein kinase C and adenylyl cyclase might be upstream events in the activation of protein kinase A after PREGS.Received 7 January 2005; received after revision 19 February 2005; accepted 22 February 2005 Available online 29 March 2005  相似文献   

11.
Effects of 17-estradiol (E2) in vitro on Na-dependent Ca2+ efflux from, and depolarization-induced Ca2+ uptake into, the nerve cell were studied with the use of synaptosomes isolated from the brain stem, mesencephalic reticular formation (MRF), caudate nucleus and the hippocampus of long-term ovariectomized adult female rats. It was found that E2 (1) at a concentration of 10 nM or lower, stimulates Na-dependent Ca2+ efflux in the caudate nucleus and hippocampus, and does not affect the efflux in MRF and brain stem; (2) at concentrations above 10 nM has no effect on the Ca2+ efflux in any of the four structures investigated; and (3) produces a biphasic effect on the depolarization-induced Ca2+ uptake, increasing it in all structures except MRF at 10 nM concentration, and decreasing it at concentrations higher than 10 nM, irrespective of the structure investigated. These results suggest that E2, acting at extranuclear sites, modulates synaptic transmission via alterations of Ca2+ transport mechanisms in nerve endings.  相似文献   

12.
Summary In detergent-treated cardiac muscle fibers, forskolin, a potent activator of adenylate cyclases, inhibits tension development elicited with submaximal [Ca2+] and increases incorporation of32P into troponin-I. A similar reduced tension development has been observed after treatment with cAMP or the catalytic subunit of the cAMP-dependent protein kinase. It is concluded that these fibers still contain much of the enzyme cascade involved in evoking a contractile response to \-adrenergic stimulation.Acknowledgment. The authors thank Dr H. Metzger, Hoechst AG, Frankfurt (FRG) for the gift of forskolin. The excellent technical assistance of Mrs Doris Eubler and the support by the Deutsche Forschungsgemeinschaft (SFB 90) are gratefully acknowledged.  相似文献   

13.
Class III adenylyl cyclases are the most abundant type of cyclic AMP-producing enzymes. The adjustment of the cellular levels of this second messenger is achieved by a variety of regulatory mechanisms which couple signals to adenylyl cyclase activity. Because of the divergent nature of stimuli which impinge on these enzymes, highly individualized class III adenylyl cyclases have evolved in metazoans, eukaryotic unicells and bacteria. Regulation usually exploits the dimeric structure of the catalyst, whose active centres form at the dimer interface. The fold of the catalytic domains and the basic catalytic mechanisms are similar in all class III adenylyl cyclases, and substrate binding generally closes the active site by an induced-fit mechanism. Regulatory inputs can result in dramatic rearrangements of the catalytic domains within the dimer, which often are based on rotational movements. Received 13 February 2006; received after revision 16 March 2006; accepted 20 April 2006  相似文献   

14.
Summary During hepatointoxication, the increase of intracellular Ca2+ is accompanied by an increase of cAMP. This reversible phenomenon suggests that the production of cAMP is likely to be a response of the cell in order to activate the exclusion of Ca2+.This work was supported by a grant from the Ministerium für Wissenschaft und Forschung des Landes Nordrhein-Westfalen.  相似文献   

15.
Calmodulin mediates melatonin cytoskeletal effects   总被引:6,自引:0,他引:6  
In this article, we review the data concerning melatonin interactions with calmodulin. The kinetics of melatonin-calmodulin binding suggest that the hormone modulates cell activity through intracellular binding to the protein at physiological concentration ranges. Melatonin interaction with calmodulin may allow the hormone to modulate rhythmically many cellular functions. Melatonin's effect on tubulin polymerization, and cytoskeletal changes in MDCK and N1E-115 cells cultured with melatonin, suggest that at low concentrations (10–9 M) cytoskeletal effects are mediated by its antagonism to Ca2+-calmodulin. At higher concentrations (10–5 M), non-specific binding of melatonin to tubulin occurs thus overcoming the specific melatonin antagonism to Ca2+-calmodulin. Since the structures of melatonin and calmodulin are phylogenetically well preserved, calmodulin-melatonin interaction probably represents a major mechanism for regulation and synchronization of cell physiology.  相似文献   

16.
Summary In smooth muscle the Mr 20,000 light chain of myosin is phosphorylated by a calmodulin-dependent protein kinase. It consists of 2 subunits: calmodulin, an acidic protein of Mr 17,000 that binds 4 moles of Ca2+; and a larger protein of Mr circa 130,000. Activation of the kinase is dependent upon their association in the presence of Ca2+. Cyclic AMP-dependent protein kinase phosphorylation of the myosin light chain kinase occurs at 2 sites. It decreases the affinity of the kinase for calmodulin and a reduction in the rate of light chain phosphorylation occurs. The kinase has an overall asymmetric shape composed of a globular head and tail region for the skeletal muscle enzyme. Trypsin digestion of this kinase releases a fragment of Mr 36,000 from the globular region that contains the catalytic and calmodulin binding sites. Chymotrypsin digestion of the kinase from smooth muscle generates a fragment of Mr 80,000 that does not contain the calmodulin binding or cyclic AMP-dependent protein kinase phosphorylation sites. It is a Ca2+-independent form of the kinase that phosphorylates the light chain of myosin. These structural features indicate a regulatory role for the kinase in smooth muscle phosphorylation and contraction.  相似文献   

17.
Changes in cytosolic Ca2+ play an important role in a wide array of cell types and the control of its concentration depends upon the interplay of many cellular constituents. Resting cells maintain cytosolic calcium ([Ca2+]i) at a low level in the face of steep gradients of extracellular and sequestered Ca2+. Many different signals can provoke the opening of calcium channels in the plasma membrane or in intracellular compartments and cause rapid influx of Ca2+ into the cytosol and elevation of [Ca2+]i. After such stimulation Ca2+ ATPases located in the plasma membrane and in the membranes of intracellular stores rapidly return [Ca2+]i to its basal level. Such responses to elevation of [Ca2+]i are a part of an important signal transduction mechanism that uses calcium (often via the binding protein calmodulin) to mediate a variety of cellular actions responsive to outside influences.  相似文献   

18.
Ca2+ signaling plays a crucial role in virtually all cellular processes, from the origin of new life at fertilization to the end of life when cells die. Both the influx of external Ca2+ through Ca2+-permeable channels and its release from intracellular stores are essential to the signaling function. Intracellular Ca2+ is influenced by mitogenic factors which control the entry and progression of the cell cycle; this is a strong indication for a role of Ca2+ in the control of the cycle, but surprisingly, the possibility of such a role has only been paid scant attention in the literature. Substantial progress has nevertheless been made in recent years in relating Ca2+ and the principal decoder of its information, calmodulin, to the modulation of various cycle steps. The aim of this review is to critically discuss the evidence for a role of Ca2+ in the cell cycle and to discuss Ca2+-dependent pathways regulating cell growth and differentiation. Received 2 March 2005; received after revision 9 May 2005; accepted 24 May 2005  相似文献   

19.
Based on the findings that proinsulin C-peptide binds specifically to cell membranes, we investigated the effects of C-peptide and related molecules on the intracellular Ca2+ concentration ([Ca2+]i) in human renal tubular cells using the indicator fura-2/AM. The results show that human C-peptide and its C-terminal pentapeptide (positions 27–31, EGSLQ), but not the des (27–31) C-peptide or randomly scrambled C-peptide, elicit a transient increase in [Ca2+]i. Rat C-peptide and rat C-terminal pentapeptide also induce a [Ca2+]i response in human tubular cells, while a human pentapeptide analogue with Ala at position 1 gives no [Ca2+]i response, and those with Ala at positions 2–5 induce responses with different amplitudes. These results define a species cross-reactivity for C-peptide and demonstrate the importance of Glu at position 1 of the pentapeptide. Preincubation of cells with pertussis toxin abolishes the effect on [Ca2+]i by both C-peptide and the pentapeptide. These results are compatible with previous data on C-peptide binding to cells and activation of Na+,K+ATPase. Combined, all data show that C-peptide is a bioactive peptide and suggest that it elicits changes in [Ca2+]i via G-protein-coupled pathways, giving downstream enzyme effects. Received 13 May 2002; accepted 16 May 2002  相似文献   

20.
Abnormalities of contractile function have been identified in cardiomyocytes isolated from failed human hearts and from hearts of animals with experimentally induced heart failure (HF). The mechanism(s) responsible for these functional abnormalities are not fully understood. In the present study, we examined the relationship between action potential duration, pattern of contraction and relaxation, and associated intracellular Ca2+ transients in single cardiomyocytes isolated from the left ventricle (LV) of dogs (n = 7) with HF produced by multiple sequential intracoronary microembolizations. Comparisons were made with LV cardiomyocytes isolated from normal dogs. Action potentials were measured in isolated LV cardiomyocytes by perforated patch clamp, Ca2+ transients by fluo 3 probe fluorescence, and cardiomyocyte contraction and relaxation by edge movement detector. HF cardiomyocytes exhibited an abnormal pattern of contraction and relaxation characterized by an attenuated initial twitch (spike) followed by a sustained contracture ('dome') of 1 to 8 s in duration and subsequent delayed relaxation. This pattern was more prominent at low stimulation rates (58% at 0.2 Hz, n = 211, 21% at 0.5 Hz, n = 185). Measurements of Ca2+ transients in HF cardiomyocytes at 0.2 Hz manifested a similar spike and dome configuration. The dome phase of both the contraction/relaxation pattern and Ca2+ transients seen in HF cardiomyocytes coincided with a sustained plateau of the action potential. Shortening of the action potential duration by administration of saxitoxin (100 nM) or lidocaine (30 μM) reduced the duration of the dome phase of both the contraction/relaxation profile as well as that of the Ca2+ transient profile. An increase of stimulation rate up to 1 Hz caused shortening of the action potential and disappearance of the spike-dome profile in the majority of HF cardiomyocytes. In HF cardiomyocytes, the action potential and Ca2+ transient duration were not significantly different from those measured in normal cells. However, the contraction-relaxation cycle was significantly longer in HF cells (314 ± 67 ms, n = 21, vs. 221 ± 38 ms, n = 46, mean ± SD), indicating impaired excitation-contraction uncou pling in HF cardiomyocytes. The results show that, in cardiomyocytes isolated from dogs with HF, contractile abnormalities and abnormalities of intracellular Ca2+ transients at low stimulation rates are characterized by a spike-dome configuration. This abnormal pattern appears to result from prolongation of the action potential. Received 22 January 1998; received after revision 16 March 1998; accepted 27 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号