首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
本文研究了矿渣粉磨细度对其在水泥中掺量和水泥性能的影响。研究表明:提高矿渣粉磨细度可提高其在水泥中掺量15—30%。采用分别粉磨提高矿渣的粉磨细度是提高矿渣掺量的有效措施  相似文献   

2.
将磨细矿渣和粉煤灰分别等量取代水泥得到的3组磨细矿渣混凝土和2组粉煤灰混凝土进行了弯曲疲劳试验,与基准混凝土的疲劳性能进行了对比.并由差热热重试验和恒温箱干燥高温炉灼烧法,分别测得了Ca(OH)2质量分数和非蒸发水质量分数随混凝土中磨细矿渣或粉煤灰掺量的变化规律.结果表明,对于养护龄期为90d的C50混凝土,当S95级磨细矿渣或Ⅰ级粉煤灰等量取代水泥质量的30%时,混凝土的弯曲疲劳性能最佳.  相似文献   

3.
研究了用50%和70%(质量分数)矿渣粉替代硅酸盐水泥对混凝土力学性能和抗碳化性能的影响,对混凝土的碳化方程(X=Ktb)进行回归分析。结果表明:矿渣粉掺量为50%时,其混凝土28d抗压强度甚至优于硅酸盐混凝土,但碳化深度和碳化系数K随着矿渣粉掺量的增加而增加,b值则呈下降趋势,且在同一胶凝材料的情况下,K值与强度负相关。  相似文献   

4.
矿渣对水泥性能的影响   总被引:1,自引:1,他引:0  
矿渣作为油井水泥的一种外掺料,它的加入可以对水泥浆性能产生多方面的影响,表现在提高水泥石的抗压强度,改变水泥浆的稠化时间,可以使水泥石更加致密;电镜分析显示,矿渣的加入,可以大大加快水泥的水化速度,提高水泥石的早期抗压强度。  相似文献   

5.
6.
研究了矿渣的细度、掺量对水泥砂浆的强度和流动性的影响.结果表明:矿渣细度较小时,抗压强度随着掺量的增加而下降.当细度变大,强度随着掺量增加而下降的趋势变缓.细度超过一定值后,强度随着掺量的增加呈现上升趋势.同时,细度、掺量对早期(3d、7d)强度和后期(28d)强度的影响也有差别.细度低于800m2/kg的矿渣对砂浆的流动性影响不大,但细度高于800m2/kg的超细矿渣能够显著降低用水量.试验结果为研究矿渣在高性能混凝土中的应用提供了依据.  相似文献   

7.
矿粉与水泥的密堆及其对矿渣水泥的性能影响   总被引:3,自引:1,他引:3  
将一系列经超细粉磨处理的矿渣微粉以不同比例与一定细度的水泥进行匹配 ,制成一系列矿渣水泥试样 ;根据Dinger Funk的数学模型得出粉体最佳颗粒群分布 (即堆积密度达最大的分布 ) ;通过水泥与矿粉的激光粒度检测结果 ,计算各矿渣水泥的实际颗粒群分布 ;运用灰色关联分析原理 ,考察各矿渣水泥试样的颗粒群分布与Dinger Funk最紧密堆积颗粒群分布的相关性 ;对各矿渣水泥进行标准稠度用水量以及硬化浆体的孔隙率等测定 .结果证明 :当矿渣水泥颗粒分布与最紧密堆积的关联度较高时 ,相应的矿渣水泥标准稠度用水量较少 ,硬化浆体孔隙率较低 ,胶砂强度较高 .  相似文献   

8.
探讨了化学激发剂Na2CO3对高掺量矿渣水泥的力学及耐久性能的影响。研究结果证明:在矿渣掺量达70%的情况下,以1.5%Na2CO3作为激发剂可显著改善高掺量矿渣水泥的力学性能,28 d的抗折强度提高了25%,且该高掺量矿渣水泥的耐久性能如安定性、水化热、抗硫酸盐腐蚀均优于纯硅酸盐水泥。  相似文献   

9.
矿渣掺量对阿利特-硫铝酸钡钙水泥性能的影响   总被引:2,自引:0,他引:2  
研究矿渣掺量对阿利特-硫铝酸钡钙水泥性能的影响,当质量分数掺量为10%时,阿利特-硫铝酸钡钙水泥3d、28d的强度分别达到44.5MPa和77.6MPa.采用XRD、SEM等方法研究阿利特-硫铝酸钡钙水泥水化产物的组成、结构和形貌,并对该水泥的水化机理进行探讨.结果表明:当矿渣掺量质量分数为10%时,促进了该水泥的水化,有利于水泥强度的提高.  相似文献   

10.
为了深入研究水泥与矿粉对沥青胶浆性能改善效果,试验选用水泥与矿粉2种填料与沥青质量比m_c/m_a为0.2、0.3、0.4、0.5、0.6、0.8等6种比例制备沥青胶浆,对二者的路用性能进行了基本指标测定试验、动态剪切流变试验(DSR)、弯曲梁流变试验(BBR)、标准粘度测定试验,综合评判水泥与矿粉对沥青胶浆性能影响效果。研究表明,m_c/m_a在0.4~0.6范围时,选用水泥填料的沥青胶浆比矿粉填料的沥青胶浆在抗剪强度、耐高温性能和抗车辙能力等方面均有较大幅度的提升,研究成果为水泥作为填料改善沥青混凝土路用性能的可行性提供了依据。  相似文献   

11.
随着矿渣排放量的急剧增加,环境问题日益凸显,同时出现了许多应用矿渣的新理论、新工艺.然而,大幅度提高水泥中矿渣掺量、相应降低水泥熟料含量,必然引起水泥性能的变化.必须通过试验验证配合比的合理性、安全性.本文主要用灰色关联分析方法研究了矿渣微粉颗粒级配对新型矿渣水泥强度的影响,新型矿渣水泥的矿渣掺量最高达到了70%.研究表明,矿渣粉的区间粒度分布与新型矿渣水泥强度的关联度有如下规律:对水泥的3 d早期强度贡献最大的是0~10 μm内的矿渣微粉,而对28 d强度贡献最大的是10~20μm的矿渣微粉.因此,通过改进粉磨工艺及矿渣微粉的颗粒组成,可以提高新型矿渣水泥的强度.  相似文献   

12.
按照不同钢渣掺比制作了混凝土样块, 测定了不同钢渣掺比和不同养护条件下混凝土样块的抗压强度以及浸出pH 值, 研究了不同钢渣掺比下混凝土样块的抗压强度与水化反应的关系和机理. 实验结果表明: 20% 钢渣掺比为最佳掺比, 而超过30% 掺比之后的混凝土抗压强度逐渐下降; 混凝土样块在去离子水中的浸出pH 值随钢渣的掺比和混凝土样块碳化时间的不同而变化, 主要原因是钢渣含有一定量的低铁铝相.  相似文献   

13.
矿渣抗腐蚀水泥的性能评价   总被引:1,自引:1,他引:0  
杨雪 《科学技术与工程》2012,12(6):1390-1392,1396
随着油田的开发,地下流体对水泥石的腐蚀更加严重.通过在G级水泥中添加矿渣,可提高水泥石的抗腐蚀性.加入矿渣的大连G级水泥浆表观黏度下降,稠化时间缩短,水泥石的抗压强度降低,但水泥石强度发展均匀,未出现强度衰退的现象.加入的矿渣填充在水泥石的孔隙之间,参与水化反应;生成大量的针状的钙钒石,使得水泥石孔隙减小,抑制腐蚀性离子的侵入,从而提高水泥石的抗腐蚀性.  相似文献   

14.
通过对钢渣种类、粒径及掺量对水泥砂浆耐磨性影响的研究,以及对掺加钢渣的水泥砂浆的后期稳定性和抗硫酸盐侵蚀性能的研究,探讨了利用钢渣制备高耐磨路面的可行性及工艺参数。该项研究对于提高路面的耐磨性和抗滑能力,增加道路混凝土的绿色含量具有重要的意义。  相似文献   

15.
研究了Ca(OH)_2、硬石膏及少量可溶性钙盐(甲酸钙、乙酸钙等)复合对高炉矿渣活性的激发作用及物料配比与性能的关系。结果表明:Ca(OH)_2与硬石膏复合对矿渣活性有一定的激发效果,可溶性钙盐的加入降低了水泥的pH值,进一步激发了矿渣的活性,乙酸钙(Ca(CH_2COOH)_2)的激发效果好于甲酸钙(Ca(COOH)_2);在矿渣掺量为80%,Ca(OH)_2掺量15%,硬石膏掺量5%,外加1.0%Ca(CH_2COOH)_2生产出的无熟料水泥28 d抗压强度达54.6 MPa;Ca(COOH)_2与硬石膏促进高炉矿渣水化的主要水化产物为钙矾石和C-S-H凝胶。  相似文献   

16.
高炉渣是钢铁行业生产过程中的必然产物, 随着我国经济不断高速增长, 钢铁产量逐年提高, 高炉渣的堆积量也在不断上升. 完善矿渣水泥的理论研究, 提高高炉渣的利用率, 既能够减少固体废弃物的数量、 保护环境, 又能够为企业带来更好的经济效益. 实验结果表明, 减小高炉渣颗粒粒径能够加快水化反应的进程, 提高抗压强度. 另外, 高炉渣颗粒的粒径分布对混凝土抗压强度也会产生显著影响.  相似文献   

17.
炼钢厂电弧炉产生的钢渣中化学成分与水泥原料的化学成分相似,利用钢渣作为水泥原料之一,可用来制备水泥熟料。水泥的主要原料是石灰石、页岩、河沙、钢渣,通过破碎矿物球磨制取原料的粉末、筛选、配比、混料、煅烧、破碎、球磨、混合、成型及性能的测试分析,可得出如下结论:水泥熟料会随钢渣掺入量增多出现烧结现象,钢渣掺入量最大值会因温度升高而降低,越大粘锅现象越严重;空冷方式优于炉冷方式,空冷得到的熟料硬化后几乎无开裂;15%的钢渣掺入量在1300℃煅烧,保温2 h,500℃取出空冷能得到性能最佳的水泥熟料,水泥水化硬化后不出现裂纹,硬度较高,密度最大,球磨后粒度较好。  相似文献   

18.
细度及放置时间对湿磨矿渣胶砂强度的影响   总被引:1,自引:1,他引:0  
运用湿磨方式处理矿渣,制备一种矿渣浆状掺合料,基于矿物掺合料干、湿磨环境介质的不同,研究细度及放置时间对湿磨的矿渣浆状掺合料胶砂强度的影响,并对其机理进行分析.结果表明:因水介质的存在,矿渣浆状掺合料在湿磨处理及放置过程中,会出现金属离子溶出、玻璃体表面键合羟基以及高度无序化层溶解等特点,使得矿渣浆状掺合料的胶砂强度不仅决定于其细度,还受其放置时间影响.  相似文献   

19.
漂珠低密度水泥浆体系的评价与应用   总被引:1,自引:0,他引:1  
选择漂珠为减轻剂,可以配制出密度在1.40~1.60 g/cm3的低密度水泥浆体系.该体系流动性较好,具有较高的稳定性、动切力和凝胶强度,在60℃下,失水量小于50 mL,24 h抗压强度大于8.0 MPa.现场实验表明,低密度水泥浆体系可以应用在易漏失井上,能有效地解决这些地区底层压力低,固井时易漏的问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号