首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dechlorination of 2,4-dichlorophenol by nickel nanoparticles under the acidic conditions
Authors:Li Feng  XiaoPeng Ge  Yi Li  DongSheng Wang  HongXiao Tang
Institution:(1) Institute of Metal Research, Chinese Academy of Sciences, 110016 Shenyang, P R China;(2) Shenyang National Laboratory for Materials Science, 110016 Shenyang, P R China
Abstract:Metal nanoparticles are effective for remediation of contamination with a range of compounds including chlorinated organics. However, the sorption process of the passivation oxide layers on the metal nanoparticle surfaces may result in incomplete degradation of contaminants. This phenomenon can be prevented by an acidic washing procedure or reaction in an acidic medium. In this paper, nickel nanoparticles manufactured via the carbonyl powder process were analyzed using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. The sorption and degradation of 2,4-dichlorophenol (2,4-DCP) by nickel nanoparticles under acidic conditions was then investigated. Transmission electron microscopy and XRD results showed that the nickel nanoparticles range in size from 10 to 20 nm, and a thin passivation layer of NiO is present on the surface. This oxide layer can be removed by pretreatment washing with acidic solutions. It was indicated that dechlorination was the key reaction pathway for degradation of 2,4-DCP by nickel nanoparticles under acidic conditions. The main degradation products were 4-Chlorophenol, 2-Chlorophenol, and Phenol, and among these, Phenol was dominant. The acidic medium promoted degradation by providing an appropriate pH, and H+ may be involved in the reaction. Dechlorination of 2,4-DCP by nickel nanoparticles under the acidic condition follows the second order kinetic model, and the rate constants at 298, 306, 316 K are 0.02, 0.2 and 0.3 (g L h)−1, respectively.
Keywords:nickel  nanoparticles  2  4-dichiorophenol  dechlorination  sorption  acid conditions
本文献已被 CNKI 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号