首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
系统科学   1篇
研究方法   1篇
综合类   6篇
自然研究   1篇
  2016年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2003年   2篇
  2002年   2篇
排序方式: 共有9条查询结果,搜索用时 93 毫秒
1
1.
In legumes, root nodule organogenesis is activated in response to morphogenic lipochitin oligosaccharides that are synthesized by bacteria, commonly known as rhizobia. Successful symbiotic interaction results in the formation of highly specialized organs called root nodules, which provide a unique environment for symbiotic nitrogen fixation. In wild-type plants the number of nodules is regulated by a signalling mechanism integrating environmental and developmental cues to arrest most rhizobial infections within the susceptible zone of the root. Furthermore, a feedback mechanism controls the temporal and spatial susceptibility to infection of the root system. This mechanism is referred to as autoregulation of nodulation, as earlier nodulation events inhibit nodulation of younger root tissues. Lotus japonicus plants homozygous for a mutation in the hypernodulation aberrant root (har1) locus escape this regulation and form an excessive number of nodules. Here we report the molecular cloning and expression analysis of the HAR1 gene and the pea orthologue, Pisum sativum, SYM29. HAR1 encodes a putative serine/threonine receptor kinase, which is required for shoot-controlled regulation of root growth, nodule number, and for nitrate sensitivity of symbiotic development.  相似文献   
2.
There are few in situ observations of deep-sea macrofauna, due to the remoteness of this ecosystem. Visual surveys conducted for marine management by MAREANO, (marine area database for Norwegian waters) and the petroleum industry (by SERPENTS, scientific and environmental remotely operated vehicle partnership using existing industrial technology) have provided unique material of visual information from large areas in the Norwegian Sea. The distribution, density and behaviour of the deep-sea amphipod Neohela monstrosa (Boeck, 1861) is described based on videos and samples from the Norwegian Sea. This amphipod is common on mud bottoms at 200–2181 m depth in the area. Dense communities were found in stands of the arctic sea pen Umbellula encrinus at more than 1000 m depth where temperatures were below 0° C. The mean density of N. monstrosa observed for larger areas was 4/100 m2 but densities of 15–36 individuals per m2 were found in local patches. It is domicolous which is characteristic of the superfamily Corophiida and digs burrows in soft muddy bottoms primarily by using large shovel-like gnathopods to scoop the sediment out. The amphipod was observed pushing and rolling sediment balls out of its burrow, which were probably held together with amphipod silk. It digs out an upper 3 to 4 cm wide burrow with a horizontal side burrow a couple of centimetres down. Neohela monstrosa appears to feeds on newly settled detritus that it collects from the surface sediment through the use of its long antennae while the burrow is mainly used for protection against predators such as demersal fish. Newly released juveniles are probably kept in the burrow for protection. Based on the local high density of N. monstrosa together with its habit of making long burrows, we suggest that there is significant bioturbation associated with the presence of N. monstrosa in deep sedimentary habitats of the Norwegian Sea, which likely provides an important ecosystem function.  相似文献   
3.
In this article we reflect upon an integrated approach to action research. The role of the engaged researcher is empirically addressed by using longitudinal field experiences. We take a narrative approach and tell three stories from the field. In analysing the stories we propose a transition of the role of the engaged researcher, from that of a translator of general theory and contextual practices to one of a literary change agent. The literary change agent inspires practitioners by means as concepts, metaphors and storytelling. We suggest that the narrative approach can bring a new and critical flavour to the previously under-explored area of the role of the researcher in action research.
Lene FossEmail:
  相似文献   
4.
Hau LV 《Nature》2008,452(7183):37-38
  相似文献   
5.
Plants belonging to the legume family develop nitrogen-fixing root nodules in symbiosis with bacteria commonly known as rhizobia. The legume host encodes all of the functions necessary to build the specialized symbiotic organ, the nodule, but the process is elicited by the bacteria. Molecular communication initiates the interaction, and signals, usually flavones, secreted by the legume root induce the bacteria to produce a lipochitin-oligosaccharide signal molecule (Nod-factor), which in turn triggers the plant organogenic process. An important determinant of bacterial host specificity is the structure of the Nod-factor, suggesting that a plant receptor is involved in signal perception and signal transduction initiating the plant developmental response. Here we describe the cloning of a putative Nod-factor receptor kinase gene (NFR5) from Lotus japonicus. NFR5 is essential for Nod-factor perception and encodes an unusual transmembrane serine/threonine receptor-like kinase required for the earliest detectable plant responses to bacteria and Nod-factor. The extracellular domain of the putative receptor has three modules with similarity to LysM domains known from peptidoglycan-binding proteins and chitinases. Together with an atypical kinase domain structure this characterizes an unusual receptor-like kinase.  相似文献   
6.
Although most higher plants establish a symbiosis with arbuscular mycorrhizal fungi, symbiotic nitrogen fixation with rhizobia is a salient feature of legumes. Despite this host range difference, mycorrhizal and rhizobial invasion shares a common plant-specified genetic programme controlling the early host interaction. One feature distinguishing legumes is their ability to perceive rhizobial-specific signal molecules. We describe here two LysM-type serine/threonine receptor kinase genes, NFR1 and NFR5, enabling the model legume Lotus japonicus to recognize its bacterial microsymbiont Mesorhizobium loti. The extracellular domains of the two transmembrane kinases resemble LysM domains of peptidoglycan- and chitin-binding proteins, suggesting that they may be involved directly in perception of the rhizobial lipochitin-oligosaccharide signal. We show that NFR1 and NFR5 are required for the earliest physiological and cellular responses to this lipochitin-oligosaccharide signal, and demonstrate their role in the mechanism establishing susceptibility of the legume root for bacterial infection.  相似文献   
7.
Magnesium is an essential ion involved in many biochemical and physiological processes. Homeostasis of magnesium levels is tightly regulated and depends on the balance between intestinal absorption and renal excretion. However, little is known about specific proteins mediating transepithelial magnesium transport. Using a positional candidate gene approach, we identified mutations in TRPM6 (also known as CHAK2), encoding TRPM6, in autosomal-recessive hypomagnesemia with secondary hypocalcemia (HSH, OMIM 602014), previously mapped to chromosome 9q22 (ref. 3). The TRPM6 protein is a new member of the long transient receptor potential channel (TRPM) family and is highly similar to TRPM7 (also known as TRP-PLIK), a bifunctional protein that combines calcium- and magnesium-permeable cation channel properties with protein kinase activity. TRPM6 is expressed in intestinal epithelia and kidney tubules. These findings indicate that TRPM6 is crucial for magnesium homeostasis and implicate a TRPM family member in human disease.  相似文献   
8.
Induced development of a new plant organ in response to rhizobia is the most prominent manifestation of legume root-nodule symbiosis with nitrogen-fixing bacteria. Here we show that the complex root-nodule organogenic programme can be genetically deregulated to trigger de novo nodule formation in the absence of rhizobia or exogenous rhizobial signals. In an ethylmethane sulphonate-induced snf1 (spontaneous nodule formation) mutant of Lotus japonicus, a single amino-acid replacement in a Ca2+/calmodulin-dependent protein kinase (CCaMK) is sufficient to turn fully differentiated root cortical cells into meristematic founder cells of root nodule primordia. These spontaneous nodules are genuine nodules with an ontogeny similar to that of rhizobial-induced root nodules, corroborating previous physiological studies. Using two receptor-deficient genetic backgrounds we provide evidence for a developmentally integrated spontaneous nodulation process that is independent of lipochitin-oligosaccharide signal perception and oscillations in Ca2+ second messenger levels. Our results reveal a key regulatory position of CCaMK upstream of all components required for cell-cycle activation, and a phenotypically divergent series of mutant alleles demonstrates positive and negative regulation of the process.  相似文献   
9.
Ginsberg NS  Garner SR  Hau LV 《Nature》2007,445(7128):623-626
In recent years, significant progress has been achieved in manipulating matter with light, and light with matter. Resonant laser fields interacting with cold, dense atom clouds provide a particularly rich system. Such light fields interact strongly with the internal electrons of the atoms, and couple directly to external atomic motion through recoil momenta imparted when photons are absorbed and emitted. Ultraslow light propagation in Bose-Einstein condensates represents an extreme example of resonant light manipulation using cold atoms. Here we demonstrate that a slow light pulse can be stopped and stored in one Bose-Einstein condensate and subsequently revived from a totally different condensate, 160 mum away; information is transferred through conversion of the optical pulse into a travelling matter wave. In the presence of an optical coupling field, a probe laser pulse is first injected into one of the condensates where it is spatially compressed to a length much shorter than the coherent extent of the condensate. The coupling field is then turned off, leaving the atoms in the first condensate in quantum superposition states that comprise a stationary component and a recoiling component in a different internal state. The amplitude and phase of the spatially localized light pulse are imprinted on the recoiling part of the wavefunction, which moves towards the second condensate. When this 'messenger' atom pulse is embedded in the second condensate, the system is re-illuminated with the coupling laser. The probe light is driven back on and the messenger pulse is coherently added to the matter field of the second condensate by way of slow-light-mediated atomic matter-wave amplification. The revived light pulse records the relative amplitude and phase between the recoiling atomic imprint and the revival condensate. Our results provide a dramatic demonstration of coherent optical information processing with matter wave dynamics. Such quantum control may find application in quantum information processing and wavefunction sculpting.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号