首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
理论与方法论   3篇
现状及发展   11篇
研究方法   4篇
综合类   8篇
  2017年   3篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
  1969年   1篇
  1964年   2篇
  1957年   1篇
  1954年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
Shell structure and magic numbers in atomic nuclei were generally explained by pioneering work that introduced a strong spin-orbit interaction to the nuclear shell model potential. However, knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), enhanced correlations arise between neutrons and protons (two distinct types of fermions) that occupy orbitals with the same quantum numbers. Such correlations have been predicted to favour an unusual type of nuclear superfluidity, termed isoscalar neutron-proton pairing, in addition to normal isovector pairing. Despite many experimental efforts, these predictions have not been confirmed. Here we report the experimental observation of excited states in the N = Z = 46 nucleus (92)Pd. Gamma rays emitted following the (58)Ni((36)Ar,2n)(92)Pd fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution γ-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction. We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling) in the ground and low-lying excited states of the heaviest N = Z nuclei. Such strong, isoscalar neutron-proton correlations would have a considerable impact on the nuclear level structure and possibly influence the dynamics of rapid proton capture in stellar nucleosynthesis.  相似文献   
2.
Acute leukaemia in bcr/abl transgenic mice   总被引:38,自引:0,他引:38  
  相似文献   
3.
Retinitis pigmentosa (RP) comprises a clinically and genetically heterogeneous group of diseases that afflicts approximately 1.5 million people worldwide. Affected individuals suffer from a progressive degeneration of the photoreceptors, eventually resulting in severe visual impairment. To isolate candidate genes for chorioretinal diseases, we cloned cDNAs specifically or preferentially expressed in the human retina and the retinal pigment epithelium (RPE) through a novel suppression subtractive hybridization (SSH) method. One of these cDNAs (RET3C11) mapped to chromosome 1q31-q32.1, a region harbouring a gene involved in a severe form of autosomal recessive RP characterized by a typical preservation of the para-arteriolar RPE (RP12; ref. 3). The full-length cDNA encodes an extracellular protein with 19 EGF-like domains, 3 laminin A G-like domains and a C-type lectin domain. This protein is homologous to the Drosophila melanogaster protein crumbs (CRB), and denoted CRB1 (crumbs homologue 1). In ten unrelated RP patients with preserved para-arteriolar RPE, we identified a homozygous AluY insertion disrupting the ORF, five homozygous missense mutations and four compound heterozygous mutations in CRB1. The similarity to CRB suggests a role for CRB1 in cell-cell interaction and possibly in the maintenance of cell polarity in the retina. The distinct RPE abnormalities observed in RP12 patients suggest that CRB1 mutations trigger a novel mechanism of photoreceptor degeneration.  相似文献   
4.
Bone morphogenetic proteins (BMPs) are important extracellular cytokines that play critical roles in embryogenesis and tissue homeostasis. BMPs signal via transmembrane type I and type II serine/threonine kinase receptors and intracellular Smad effector proteins. BMP signaling is precisely regulated and perturbation of BMP signaling is connected to multiple diseases, including musculoskeletal diseases. In this review, we will summarize the recent progress in elucidation of BMP signal transduction, how overactive BMP signaling is involved in the pathogenesis of heterotopic ossification and Duchenne muscular dystrophy, and discuss possible therapeutic strategies for treatment of these diseases.  相似文献   
5.
Corrigendum     
Ohne Zusammenfassung
Reviews

Nouveaux livres

Recensioni
  相似文献   
6.
7.
8.
9.
The use of Candecomp to fit scalar products in the context of Indscal is based on the assumption that, due to the symmetry of the data matrices involved, two components matrices will become equal when Candecomp converges. Bennani Dosse and Ten Berge (2008) have shown that, in the single component case, the assumption can only be violated at saddle points in the case of Gramian matrices. This paper again considers Candecomp applied to symmetric matrices, but with an orthonormality constraint on the components. This constrained version of Candecomp, when applied to symmetric matrices, has long been known under the acronym Indort. When the data matrices are positive definite, or have become positive semidefinite due to double centering, and the saliences are nonnegative – by chance or by constraint –, the component matrices resulting from Indort are shown to be equal. Because Indort is also free from so-called degeneracy problems, it is a highly attractive alternative to Candecomp in the present context. We also consider a well-known successive approach to the orthogonally constrained Indscal problem and we compare, from simulated and real data sets, its results with those given by the simultaneous (Indort) approach.  相似文献   
10.
Summary A method is described in which food approach behaviour of rats is recorded to study feeding behaviour. Between rats, differences in food approach behaviour were observed. For each rat, food approach behaviour was constant over a long period of time. This allows conversion of approach behaviour data into quantified feeding behaviour. Examples of long-term feeding behaviour and of reproducibility of food intake are given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号