首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
现状及发展   10篇
研究方法   2篇
综合类   26篇
  2012年   5篇
  2011年   4篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1992年   1篇
  1988年   1篇
  1983年   1篇
  1976年   2篇
  1970年   2篇
  1969年   3篇
  1968年   1篇
  1966年   1篇
  1947年   1篇
排序方式: 共有38条查询结果,搜索用时 234 毫秒
1.
Structure of a nanobody-stabilized active state of the β(2) adrenoceptor   总被引:1,自引:0,他引:1  
G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human β(2) adrenergic receptor (β(2)AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive β(2)AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11?? outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.  相似文献   
2.
Crystal structure of the β2 adrenergic receptor-Gs protein complex   总被引:1,自引:0,他引:1  
G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β(2) adrenergic receptor (β(2)AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β(2)AR and nucleotide-free Gs heterotrimer. The principal interactions between the β(2)AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the β(2)AR include a 14 ? outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.  相似文献   
3.
Structure of importin-beta bound to the IBB domain of importin-alpha.   总被引:15,自引:0,他引:15  
G Cingolani  C Petosa  K Weis  C W Müller 《Nature》1999,399(6733):221-229
Cytosolic proteins bearing a classical nuclear localization signal enter the nucleus bound to a heterodimer of importin-alpha and importin-beta (also called karyopherin-alpha and -beta). The formation of this heterodimer involves the importin-beta-binding (IBB) domain of importin-alpha, a highly basic amino-terminal region of roughly 40 amino-acid residues. Here we report the crystal structure of human importin-beta bound to the IBB domain of importin-alpha, determined at 2.5 A and 2.3 A resolution in two crystal forms. Importin-beta consists of 19 tandemly repeated HEAT motifs and wraps intimately around the IBB domain. The association involves two separate regions of importin-beta, recognizing structurally distinct parts of the IBB domain: an amino-terminal extended moiety and a carboxy-terminal helix. The structure indicates that significant conformational changes occur when importin-beta binds or releases the IBB domain domain and suggests how dissociation of the importin-alpha/beta heterodimer may be achieved upon nuclear entry.  相似文献   
4.
确定住宅建筑日照间距的棒影图综合分析法   总被引:10,自引:1,他引:9  
住宅建筑日照分析是城市居住区规划设计中的一项重要工作内容。对于正南向布置的住宅按照各地正南向住宅的标准日照间距系数计算即可 ,但是对于不同朝向的住宅或老城区、周围建筑密集区的住宅 ,日照间距的确定较为困难。文章提出利用棒影日照图综合分析确定住宅建筑日照间距 ,对于解决这类问题是一种可靠实用的方法。  相似文献   
5.
The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.  相似文献   
6.
7.
Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled μ-opioid receptor (μ-OR) in the central nervous system. Here we describe the 2.8?? crystal structure of the mouse μ-OR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most G-protein-coupled receptors published so far, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the μ-OR crystallizes as a two-fold symmetrical dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.  相似文献   
8.
Summary Heubner states that the oxidation of hæmoglobin to methæmoglobin by quinones should be due to a tension between two oxidation-reduction systems, the quinone-hydroquinone system and the hæmoglobin-methæmoglobin system. The authors tried to prove this statement by using various quinones with different oxidation-reduction potentials. An analysis of the results obtained suggests, however, that the oxidation-reduction potential is not the only factor determining the equilibrium. It seems that some other constitutionally conditioned factors also play an important role in this process.Experiments with non-hæmolyzed erythrocytes show that all quinones tested are able to pass through the cellular membrane of the erythrocytes without undergoing any chemical reaction. Thus, the experiments with hæmolyzed solutions and those with intact erythrocytes gave identical results.  相似文献   
9.
W I Weis  K Drickamer  W A Hendrickson 《Nature》1992,360(6400):127-134
C-type (Ca(2+)-dependent) animal lectins such as mannose-binding proteins mediate many cell-surface carbohydrate-recognition events. The crystal structure at 1.7 A resolution of the carbohydrate-recognition domain of rat mannose-binding protein complexed with an oligomannose asparaginyl-oligosaccharide reveals that Ca2+ forms coordination bonds with the carbohydrate ligand. Carbohydrate specificity is determined by a network of coordination and hydrogen bonds that stabilizes the ternary complex of protein, Ca2+ and sugar. Two branches of the oligosaccharide crosslink neighbouring carbohydrate-recognition domains in the crystal, enabling multivalent binding to a single oligosaccharide chain to be visualized directly.  相似文献   
10.
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) cause both persistent and latent infections, including recurrent cutaneous disease, lethal neonatal disease, central nervous system disease and other clinical syndromes. Modified live vaccines or conventionally prepared subunit vaccines have generally been unsuccessful in the treatment of HSV-1 and HSV-2 infections from the standpoints of safety and efficacy. It has been established that HSV-1 and HSV-2 infectivity may be neutralized in vitro with antisera directed specifically against each of the four major glycoproteins of the virus (gA/gB, gC, gD and gE) and antisera against glycoprotein gD, of either HSV-1 or HSV-2, are capable of neutralizing both HSV-1 and HSV-2 infectivity in vitro and in vivo. We have previously reported on the identification, DNA sequence and expression at low level in Escherichia coli of the gD gene of HSV-1 strain Patton. Here we describe construction of a hybrid gene encoding a chimaeric protein containing HSV-1 gD, bacteriophage lambda Cro and E. coli beta-galactosidase (gD-beta-gal) protein, which is expressed at high level in E. coli. Moreover, the chimaeric protein elicits antibodies in rabbits that not only immunoprecipitate gD from cells infected with HSV-1 and HSV-2 but also neutralize HSV-1 and HSV-2 infectivity in vitro.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号