首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
现状及发展   1篇
研究方法   1篇
综合类   13篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1981年   1篇
  1974年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
2.
3.
Glycine binding primes NMDA receptor internalization   总被引:18,自引:0,他引:18  
Nong Y  Huang YQ  Ju W  Kalia LV  Ahmadian G  Wang YT  Salter MW 《Nature》2003,422(6929):302-307
NMDA (N-methyl-d-aspartate) receptors (NMDARs) are a principal subtype of excitatory ligand-gated ion channel with prominent roles in physiological and disease processes in the central nervous system. Recognition that glycine potentiates NMDAR-mediated currents as well as being a requisite co-agonist of the NMDAR subtype of 'glutamate' receptor profoundly changed our understanding of chemical synaptic communication in the central nervous system. The binding of both glycine and glutamate is necessary to cause opening of the NMDAR conductance pore. Although binding of either agonist alone is insufficient to cause current flow through the channel, we report here that stimulation of the glycine site initiates signalling through the NMDAR complex, priming the receptors for clathrin-dependent endocytosis. Glycine binding alone does not cause the receptor to be endocytosed; this requires both glycine and glutamate site activation of NMDARs. The priming effect of glycine is mimicked by the NMDAR glycine site agonist d-serine, and is blocked by competitive glycine site antagonists. Synaptic as well as extrasynaptic NMDARs are primed for internalization by glycine site stimulation. Our results demonstrate transmembrane signal transduction through activating the glycine site of NMDARs, and elucidate a model for modulating cell-cell communication in the central nervous system.  相似文献   
4.
Salter MG  Franklin KA  Whitelam GC 《Nature》2003,426(6967):680-683
The phytochromes are a family of plant photoreceptor proteins that control several adaptive developmental strategies. For example, the phytochromes perceive far-red light (wavelengths between 700 and 800 nm) reflected or scattered from the leaves of nearby vegetation. This provides an early warning of potential shading, and triggers a series of 'shade-avoidance' responses, such as a rapid increase in elongation, by which the plant attempts to overgrow its neighbours. Other, less immediate, responses include accelerated flowering and early production of seeds. However, little is known about the molecular events that connect light perception with increased growth in shade avoidance. Here we show that the circadian clock gates this rapid shade-avoidance response. It is most apparent around dusk and is accompanied by altered expression of several genes. One of these rapidly responsive genes encodes a basic helix-loop-helix protein, PIL1, previously shown to interact with the clock protein TOC1 (ref. 4). Furthermore PIL1 and TOC1 are both required for the accelerated growth associated with the shade-avoidance response.  相似文献   
5.
A binding site for the T-cell co-receptor CD8 on the alpha 3 domain of HLA-A2   总被引:23,自引:0,他引:23  
Adhesion measurements between CD8 and 48 point mutants of HLA-A2.1 show that the CD8 alpha-chain binds to the alpha 3 domain of HLA-A2.1. Three clusters of alpha 3 residues contribute to the binding, with an exposed, negatively charged loop (residues 223-229) playing a dominant role. CD8 binding correlates with cytotoxic T-cell recognition and sensitivity to inhibition by anti-CD8 antibodies. Impaired alloreactive T-cell recognition of an HLA-A2.1 mutant with reduced affinity for CD8 is not restored by functional CD8 binding sites on an antigenically irrelevant class I molecule. Therefore, complexes of CD8 and the T-cell receptor bound to the same class I major histocompatibility complex molecule seem to be necessary for T-cell activation.  相似文献   
6.
Salter MG  Fern R 《Nature》2005,438(7071):1167-1171
Injury to oligodendrocyte processes, the structures responsible for myelination, is implicated in many forms of brain disorder. Here we show NMDA (N-methyl-D-aspartate) receptor subunit expression on oligodendrocyte processes, and the presence of NMDA receptor subunit messenger RNA in isolated white matter. NR1, NR2A, NR2B, NR2C, NR2D and NR3A subunits showed clustered expression in cell processes, but NR3B was absent. During modelled ischaemia, NMDA receptor activation resulted in rapid Ca2+-dependent detachment and disintegration of oligodendroglial processes in the white matter of mice expressing green fluorescent protein (GFP) specifically in oligodendrocytes (CNP-GFP mice). This effect occurred at mouse ages corresponding to both the initiation and the conclusion of myelination. NR1 subunits were found mainly in oligodendrocyte processes, whereas AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)/kainate receptor subunits were mainly found in the somata. Consistent with this observation, injury to the somata was prevented by blocking AMPA/kainate receptors, and preventing injury to oligodendroglial processes required the blocking of NMDA receptors. The presence of NMDA receptors in oligodendrocyte processes explains why previous studies that have focused on the somata have not detected a role for NMDA receptors in oligodendrocyte injury. These NMDA receptors bestow a high sensitivity to acute injury and represent an important new target for drug development in a variety of brain disorders.  相似文献   
7.
Coull JA  Beggs S  Boudreau D  Boivin D  Tsuda M  Inoue K  Gravel C  Salter MW  De Koninck Y 《Nature》2005,438(7070):1017-1021
Neuropathic pain that occurs after peripheral nerve injury depends on the hyperexcitability of neurons in the dorsal horn of the spinal cord. Spinal microglia stimulated by ATP contribute to tactile allodynia, a highly debilitating symptom of pain induced by nerve injury. Signalling between microglia and neurons is therefore an essential link in neuropathic pain transmission, but how this signalling occurs is unknown. Here we show that ATP-stimulated microglia cause a depolarizing shift in the anion reversal potential (E(anion)) in spinal lamina I neurons. This shift inverts the polarity of currents activated by GABA (gamma-amino butyric acid), as has been shown to occur after peripheral nerve injury. Applying brain-derived neurotrophic factor (BDNF) mimics the alteration in E(anion). Blocking signalling between BDNF and the receptor TrkB reverses the allodynia and the E(anion) shift that follows both nerve injury and administration of ATP-stimulated microglia. ATP stimulation evokes the release of BDNF from microglia. Preventing BDNF release from microglia by pretreating them with interfering RNA directed against BDNF before ATP stimulation also inhibits the effects of these cells on the withdrawal threshold and E(anion). Our results show that ATP-stimulated microglia signal to lamina I neurons, causing a collapse of their transmembrane anion gradient, and that BDNF is a crucial signalling molecule between microglia and neurons. Blocking this microglia-neuron signalling pathway may represent a therapeutic strategy for treating neuropathic pain.  相似文献   
8.
Polymorphism in the alpha 3 domain of HLA-A molecules affects binding to CD8   总被引:15,自引:0,他引:15  
Cytotoxic T lymphocytes (CTL) expressing the CD8 glycoprotein recognize peptide antigens presented by class I major histocompatibility complex (MHC) molecules. This correlation and the absence of CD8 polymorphism led to the hypothesis that CD8 binds to a conserved site of class I MHC molecules. Using a cell-cell binding assay we previously demonstrated specific interaction between human class I MHC (HLA-A,B,C) molecules and CD8. Subsequent analysis of the products of 17 HLA-A,B alleles revealed a natural polymorphism for CD8 binding in the human population. Two molecules, HLA-Aw68.1 and HLA-Aw68.2, which do not bind CD8, have a valine residue at position 245 whereas all other HLA-A,B,C molecules have alanine. Site-directed mutagenesis shows that this single substitution in the alpha 3 domain is responsible for the CD8 binding phenotype and also affects recognition by alloreactive and influenza-specific CTL. Our results indicate that CD8 binds to the alpha 3 domain of class I MHC molecules.  相似文献   
9.
Multiple sclerosis is a chronic, often disabling, disease of the central nervous system affecting more than 1 in 1,000 people in most western countries. The inflammatory lesions typical of multiple sclerosis show autoimmune features and depend partly on genetic factors. Of these genetic factors, only the HLA gene complex has been repeatedly confirmed to be associated with multiple sclerosis, despite considerable efforts. Polymorphisms in a number of non-HLA genes have been reported to be associated with multiple sclerosis, but so far confirmation has been difficult. Here, we report compelling evidence that polymorphisms in IL7R, which encodes the interleukin 7 receptor alpha chain (IL7Ralpha), indeed contribute to the non-HLA genetic risk in multiple sclerosis, demonstrating a role for this pathway in the pathophysiology of this disease. In addition, we report altered expression of the genes encoding IL7Ralpha and its ligand, IL7, in the cerebrospinal fluid compartment of individuals with multiple sclerosis.  相似文献   
10.
D M Salter 《Nature》1974,248(450):718-719
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号