首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
现状及发展   4篇
研究方法   1篇
综合类   10篇
  2018年   1篇
  2014年   1篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1992年   2篇
排序方式: 共有15条查询结果,搜索用时 62 毫秒
1.
Recognized as a “disease modifier”, physical activity (PA) is increasingly viewed as a more holistic, cost-saving method for prevention, treatment and management of human disease conditions. The traditional view that PA engages the monoaminergic and endorphinergic systems has been challenged by the discovery of the endocannabinoid system (ECS), composed of endogenous lipids, their target receptors, and metabolic enzymes. Indeed, direct and indirect evidence suggests that the ECS might mediate some of the PA-triggered effects throughout the body. Moreover, it is now emerging that PA itself is able to modulate ECS in different ways. Against this background, in the present review we shall discuss evidence of the cross-talk between PA and the ECS, ranging from brain to peripheral districts and highlighting how ECS must be tightly regulated during PA, in order to maintain its beneficial effects on cognition, mood, and nociception, while avoiding impaired energy metabolism, oxidative stress, and inflammatory processes.  相似文献   
2.
We have studied the chemistry of aminoacyl AMP to model reactions at the 3' terminus of aminoacyl tRNA for the purpose of understanding the origin of protein synthesis. The present studies relate to the D, L preference in the esterification of 5'-AMP. All N-acetyl amino acids we studied showed faster reaction of the D-isomer, with a generally decreasing preference for D-isomer as the hydrophobicity of the amino acid decreased. The beta-branched amino acids, Ile and Val, showed an extreme preference for D-isomer. Ac-Leu, the gamma-branched amino acid, showed a slightly low D/L ratio relative to its hydrophobicity. The molecular basis for these preferences for D-isomer is understandable in the light of our previous studies and seems to be due to preferential hydrophobic interaction of the D-isomer with adenine. The preference for hydrophobic D-amino acids can be decreased by addition of an organic solvent to the reaction medium. Conversely, peptidylation with Ac-PhePhe shows a preference for the LL isomer over the DD isomer.  相似文献   
3.
Kwon HB  Sabatini BL 《Nature》2011,474(7349):100-104
Mature cortical pyramidal neurons receive excitatory inputs onto small protrusions emanating from their dendrites called spines. Spines undergo activity-dependent remodelling, stabilization and pruning during development, and similar structural changes can be triggered by learning and changes in sensory experiences. However, the biochemical triggers and mechanisms of de novo spine formation in the developing brain and the functional significance of new spines to neuronal connectivity are largely unknown. Here we develop an approach to induce and monitor de novo spine formation in real time using combined two-photon laser-scanning microscopy and two-photon laser uncaging of glutamate. Our data demonstrate that, in mouse cortical layer 2/3 pyramidal neurons, glutamate is sufficient to trigger de novo spine growth from the dendrite shaft in a location-specific manner. We find that glutamate-induced spinogenesis requires opening of NMDARs (N-methyl-D-aspartate-type glutamate receptors) and activation of protein kinase A (PKA) but is independent of calcium-calmodulin-dependent kinase II (CaMKII) and tyrosine kinase receptor B (TrkB) receptors. Furthermore, newly formed spines express glutamate receptors and are rapidly functional such that they transduce presynaptic activity into postsynaptic signals. Together, our data demonstrate that early neural connectivity is shaped by activity in a spatially precise manner and that nascent dendrite spines are rapidly functionally incorporated into cortical circuits.  相似文献   
4.
5.
A unifying model for mTORC1-mediated regulation of mRNA translation   总被引:2,自引:0,他引:2  
  相似文献   
6.
A brain-specific microRNA regulates dendritic spine development   总被引:6,自引:0,他引:6  
MicroRNAs are small, non-coding RNAs that control the translation of target messenger RNAs, thereby regulating critical aspects of plant and animal development. In the mammalian nervous system, the spatiotemporal control of mRNA translation has an important role in synaptic development and plasticity. Although a number of microRNAs have been isolated from the mammalian brain, neither the specific microRNAs that regulate synapse function nor their target mRNAs have been identified. Here we show that a brain-specific microRNA, miR-134, is localized to the synapto-dendritic compartment of rat hippocampal neurons and negatively regulates the size of dendritic spines--postsynaptic sites of excitatory synaptic transmission. This effect is mediated by miR-134 inhibition of the translation of an mRNA encoding a protein kinase, Limk1, that controls spine development. Exposure of neurons to extracellular stimuli such as brain-derived neurotrophic factor relieves miR-134 inhibition of Limk1 translation and in this way may contribute to synaptic development, maturation and/or plasticity.  相似文献   
7.
We have studied the chemistry of aminoacyl AMP to model reactions at the 3 terminus of aminoacyl tRNA for the purpose of understanding the origin of protein synthesis. The present studies relate to the D, L preference in the esterification of 5-AMP. All N-acetyl amino acids we studied showed faster reaction of the D-isomer, with a generally decreasing preference for D-isomer as the hydrophobicity of the amino acid decreased. The -branched amino acids, Ile and Val, showed an extreme preference for D-isomer. Ac-Leu, the -branched amino acid, showed a slightly low D/L ratio relative to its hydrophobicity. The molecular basis for these preferences for D-isomer is understandable in the light of our previous studies and seems to be due to preferential hydrophobic interaction of the D-isomer with ademine. The preference for hydrophobic D-amino acids can be decreased by addition of an organic solvent to the reaction medium. Conversely, peptidylation with Ac-PhePhe shows a preference for the LL isomer over the DD isomer.  相似文献   
8.
How adult tissue stem and niche cells respond to the nutritional state of an organism is not well understood. Here we find that Paneth cells, a key constituent of the mammalian intestinal stem-cell (ISC) niche, augment stem-cell function in response to calorie restriction. Calorie restriction acts by reducing mechanistic target of rapamycin complex 1 (mTORC1) signalling in Paneth cells, and the ISC-enhancing effects of calorie restriction can be mimicked by rapamycin. Calorie intake regulates mTORC1 in Paneth cells, but not ISCs, and forced activation of mTORC1 in Paneth cells during calorie restriction abolishes the ISC-augmenting effects of the niche. Finally, increased expression of bone stromal antigen 1 (Bst1) in Paneth cells—an ectoenzyme that produces the paracrine factor cyclic ADP ribose—mediates the effects of calorie restriction and rapamycin on ISC function. Our findings establish that mTORC1 non-cell-autonomously regulates stem-cell self-renewal, and highlight a significant role of the mammalian intestinal niche in coupling stem-cell function to organismal physiology.  相似文献   
9.
We evaluated the energy metabolism of human mesenchymal stem cells (MSC) isolated from umbilical cord (UC) of preterm (< 37 weeks of gestational age) and term (≥ 37 weeks of gestational age) newborns, using MSC from adult bone marrow as control. A metabolic switch has been observed around the 34th week of gestational age from a prevalently anaerobic glycolysis to the oxidative phosphorylation. This metabolic change is associated with the organization of mitochondria reticulum: preterm MSCs presented a scarcely organized mitochondrial reticulum and low expression of proteins involved in the mitochondrial fission/fusion, compared to term MSCs. These changes seem governed by the expression of CLUH, a cytosolic messenger RNA-binding protein involved in the mitochondria biogenesis and distribution inside the cell; in fact, CLUH silencing in term MSC determined a metabolic fingerprint similar to that of preterm MSC. Our study discloses novel information on the production of energy and mitochondrial organization and function, during the passage from fetal to adult life, providing useful information for the management of preterm birth.  相似文献   
10.
Neural activity during development critically shapes postnatal wiring of the mammalian brain. This is best illustrated by the sensory systems, in which the patterned feed-forward excitation provided by sensory organs and experience drives the formation of mature topographic circuits capable of extracting specific features of sensory stimuli. In contrast, little is known about the role of early activity in the development of the basal ganglia, a phylogenetically ancient group of nuclei fundamentally important for complex motor action and reward-based learning. These nuclei lack direct sensory input and are only loosely topographically organized, forming interlocking feed-forward and feed-back inhibitory circuits without laminar structure. Here we use transgenic mice and viral gene transfer methods to modulate neurotransmitter release and neuronal activity in vivo in the developing striatum. We find that the balance of activity between the two inhibitory and antagonist pathways in the striatum regulates excitatory innervation of the basal ganglia during development. These effects indicate that the propagation of activity through a multi-stage network regulates the wiring of the basal ganglia, revealing an important role of positive feedback in driving network maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号