首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
研究方法   1篇
综合类   10篇
  2008年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
2.
3.
Changing the identity of a transfer RNA   总被引:36,自引:0,他引:36  
J Normanly  R C Ogden  S J Horvath  J Abelson 《Nature》1986,321(6067):213-219
A leucine transfer RNA has been transformed into a serine transfer RNA by changing 12 nucleotides. This result indicates that a limited set of residues determine tRNA identity.  相似文献   
4.
Dimeric tRNA precursors in yeast   总被引:23,自引:0,他引:23  
O Schmidt  J Mao  R Ogden  J Beckmann  H Sakano  J Abelson  D S?ll 《Nature》1980,287(5784):750-752
  相似文献   
5.
6.
P Gardner  D C Ogden  D Colquhoun 《Nature》1984,309(5964):160-162
Hypotheses concerning the mechanism by which acetylcholine-like agonists cause ion channels to open often suppose that the receptor-ionophore complex can exist in either of two discrete conformations, open and shut. On the basis of noise analysis it has been reported that certain agonists open ion channels of lower conductance than usual, though many potent agonists give similar conductances, and hence that differences in the conductance of ion channels opened by different agonists may contribute to differences in efficacy. Here we have reinvestigated this question by recording single ion channel currents evoked by acetylcholine-like agonists on embryonic rat muscle in tissue culture and on adult frog muscle endplate. Ten different agonists (Fig. 1) were tested, including several that noise analysis has suggested have a low conductance. The single-channel conductance was found to be the same, within a few per cent, for all 10 agonists. It seems that noise analysis has given erroneously low conductances in some cases. Therefore efficacy differences do not depend on differences in single-channel conductance evoked by various agonists but presumably on the position of the open-shunt equilibrium of the agonist-channel complexes.  相似文献   
7.
D C Ogden  S A Siegelbaum  D Colquhoun 《Nature》1981,289(5798):596-598
It is now thought that amine local anaesthetic compounds (procaine, lignocaine and related molecules) depress electrical activity in nerve and muscle cells by binding to sites within ion channels and blocking current flow. Such mechanisms have been proposed to account for the effects of these local anaesthetics on both the voltage-dependent sodium current and the postsynaptic actylcholine (ACh)-activated ionic current. Recently, strong evidence for block of ion channels by cationic drug molecules has been obtained by recording current from single ACh-activated channels in the presence of permanently charged quaternary derivatives of lignocaine. Most amine local anaesthetic compounds are, however, weak bases, present in both charged and uncharged forms at physiological pH, and some question remains as to whether a charged group is essential for blockade of ion channels. To resolve this question, we studied the action of the uncharged local anaesthetic benzocaine (ethyl-4-aminobenzoate) on postsynaptic ACh-activated endplate current and extrajunctional single channel current of frog muscle. We report here evidence that strongly suggests that benzocaine blocks ACh-activated ion channels.  相似文献   
8.
A photic visual cycle of rhodopsin regeneration is dependent on Rgr.   总被引:7,自引:0,他引:7  
During visual excitation, rhodopsin undergoes photoactivation and bleaches to opsin and all-trans-retinal. To regenerate rhodopsin and maintain normal visual sensitivity, the all-trans isomer must be metabolized and reisomerized to produce the chromophore 11-cis-retinal in biochemical steps that constitute the visual cycle and involve the retinal pigment epithelium (RPE; refs. 3-8). A key step in the visual cycle is isomerization of an all-trans retinoid to 11-cis-retinol in the RPE (refs. 9-11). It could be that the retinochrome-like opsins, peropsin, or the retinal G protein-coupled receptor (RGR) opsin12-16 are isomerases in the RPE. In contrast to visual pigments, RGR is bound predominantly to endogenous all-trans-retinal, and irradiation of RGR in vitro results in stereospecific conversion of the bound all-trans isomer to 11-cis-retinal. Here we show that RGR is involved in the formation of 11-cis-retinal in mice and functions in a light-dependent pathway of the rod visual cycle. Mutations in the human gene encoding RGR are associated with retinitis pigmentosa.  相似文献   
9.
Kainate receptors are involved in synaptic plasticity   总被引:21,自引:0,他引:21  
The ability of synapses to modify their synaptic strength in response to activity is a fundamental property of the nervous system and may be an essential component of learning and memory. There are three classes of ionotropic glutamate receptor, namely NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid) and kainate receptors; critical roles in synaptic plasticity have been identified for two of these. Thus, at many synapses in the brain, transient activation of NMDA receptors leads to a persistent modification in the strength of synaptic transmission mediated by AMPA receptors. Here, to determine whether kainate receptors are involved in synaptic plasticity, we have used a new antagonist, LY382884 ((3S, 4aR, 6S, 8aR)-6-((4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydro isoquinoline-3-carboxylic acid), which antagonizes kainate receptors at concentrations that do not affect AMPA or NMDA receptors. We find that LY382884 is a selective antagonist at neuronal kainate receptors containing the GluR5 subunit. It has no effect on long-term potentiation (LTP) that is dependent on NMDA receptors but prevents the induction of mossy fibre LTP, which is independent of NMDA receptors. Thus, kainate receptors can act as the induction trigger for long-term changes in synaptic transmission.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号