首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
丛书文集   1篇
教育与普及   1篇
综合类   8篇
  2012年   1篇
  2008年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1984年   1篇
  1979年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Current ice loss from the West Antarctic Ice Sheet (WAIS) accounts for about ten per cent of observed global sea-level rise. Losses are dominated by dynamic thinning, in which forcings by oceanic or atmospheric perturbations to the ice margin lead to an accelerated thinning of ice along the coastline. Although central to improving projections of future ice-sheet contributions to global sea-level rise, the incorporation of dynamic thinning into models has been restricted by lack of knowledge of basal topography and subglacial geology so that the rate and ultimate extent of potential WAIS retreat remains difficult to quantify. Here we report the discovery of a subglacial basin under Ferrigno Ice Stream up to 1.5?kilometres deep that connects the ice-sheet interior to the Bellingshausen Sea margin, and whose existence profoundly affects ice loss. We use a suite of ice-penetrating radar, magnetic and gravity measurements to propose a rift origin for the basin in association with the wider development of the West Antarctic rift system. The Ferrigno rift, overdeepened by glacial erosion, is a conduit which fed a major palaeo-ice stream on the adjacent continental shelf during glacial maxima. The palaeo-ice stream, in turn, eroded the 'Belgica' trough, which today routes warm open-ocean water back to the ice front to reinforce dynamic thinning. We show that dynamic thinning from both the Bellingshausen and Amundsen Sea region is being steered back to the ice-sheet interior along rift basins. We conclude that rift basins that cut across the WAIS margin can rapidly transmit coastally perturbed change inland, thereby promoting ice-sheet instability.  相似文献   
2.
3.
Partition coefficient difference of benzocarba-zole isomers between oil, water and mineral phase makes them auseful indicator to quantify petroleum migration distance. Because of their nitrogen-heteroatom andannelated aromatic cycles they are generally regarded asbeing more resistant and the effects of biodegradation ontheir concentrations and distributions have not previouslybeen investigated. Reservoir extracts from three wells lo-cated in the Leng43 block of the Liaohe Basin were analyzed to investigate their occurrence and the effect of biodegrada-tion. Both hydrocarbon biomarkers and benzocarbazole isomers show systematical changes with the increase extent of biodegradation in study columns. Carbazole compounds may be biodegraded in a similar way to that observed in aliphatic and aromatic hydrocarbons. The distance from oil water contact is a primary control factor for biodegradation. The concentrations of benzocarbazole isomers show a slight increase in the upper part of the columns then a sharp de-crease towards oil water contact (OWC). Among three iso-mers benzo[a]carbazole seems more susceptible to biode-gradation than other two isomers and benzo[b]carbazole has higher ability to res ist bacterial attack. Benzo[b]carba-zole/benzo- [a]carbazole ratios can sensitively indicate the degree of biodegradation and the benzocarbazole index (BCratio) cannot be directly used as a migration indicator inbiodegraded oils.  相似文献   
4.
A Wilhelms  S R Larter  I Head  P Farrimond  R di-Primio  C Zwach 《Nature》2001,411(6841):1034-1037
Biodegradation of crude oil by bacterial activity--which has occurred in the majority of the Earth's oil reserves--is known to reduce greatly the quality of petroleum in reservoirs. For economically successful prospecting for oil, it is therefore important to understand the processes and conditions in geological formations that lead to oil biodegradation. Although recent studies speculate that bacterial activity can potentially occur up to temperatures as high as 150 degrees C (refs 3, 4), it is generally accepted that effective petroleum biodegradation over geological timescales generally occurs in reservoirs with temperatures below 80 degrees C (ref. 2). This appears, however, to be at odds with the observation that non-degraded oils can still be found in reservoirs below this temperature. Here we compile data regarding the extent of oil biodegradation in several oil reservoirs, and find that the extensive occurrence of non-biodegraded oil in shallow, cool basins is restricted to those that have been uplifted from deeper, hotter regions of the Earth. We suggest that these petroleum reservoirs were sterilized by heating to a temperature around 80-90 degrees C during deep burial, inactivating hydrocarbon-degrading organisms that occur in the deep biosphere. Even when such reservoirs are subsequently uplifted to much cooler regions and filled with oil, degradation does not occur, implying that the sterilized sediments are not recolonized by hydrocarbon-degrading bacteria.  相似文献   
5.
Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs   总被引:1,自引:0,他引:1  
Aitken CM  Jones DM  Larter SR 《Nature》2004,431(7006):291-294
Biodegradation of crude oil in subsurface petroleum reservoirs is an important alteration process with major economic consequences. Aerobic degradation of petroleum hydrocarbons at the surface is well documented and it has long been thought that the flow of oxygen- and nutrient-bearing meteoric waters into reservoirs was necessary for in-reservoir petroleum biodegradation. The occurrence of biodegraded oils in reservoirs where aerobic conditions are unlikely, together with the identification of several anaerobic microorganisms in oil fields and the discovery of anaerobic hydrocarbon biodegradation mechanisms, suggests that anaerobic degradation processes could also be responsible. The extent of anaerobic hydrocarbon degradation processes in the world's deep petroleum reservoirs, however, remains strongly contested. Moreover, no organism has yet been isolated that has been shown to degrade hydrocarbons under the conditions found in deep petroleum reservoirs. Here we report the isolation of metabolites indicative of anaerobic hydrocarbon degradation from a large fraction of 77 degraded oil samples from both marine and lacustrine sources from around the world, including the volumetrically important Canadian tar sands. Our results therefore suggest that anaerobic hydrocarbon degradation is a common process in biodegraded subsurface oil reservoirs.  相似文献   
6.
Biodegradation of crude oil in subsurface petroleum reservoirs has adversely affected the majority of the world's oil, making recovery and refining of that oil more costly. The prevalent occurrence of biodegradation in shallow subsurface petroleum reservoirs has been attributed to aerobic bacterial hydrocarbon degradation stimulated by surface recharge of oxygen-bearing meteoric waters. This hypothesis is empirically supported by the likelihood of encountering biodegraded oils at higher levels of degradation in reservoirs near the surface. More recent findings, however, suggest that anaerobic degradation processes dominate subsurface sedimentary environments, despite slow reaction kinetics and uncertainty as to the actual degradation pathways occurring in oil reservoirs. Here we use laboratory experiments in microcosms monitoring the hydrocarbon composition of degraded oils and generated gases, together with the carbon isotopic compositions of gas and oil samples taken at wellheads and a Rayleigh isotope fractionation box model, to elucidate the probable mechanisms of hydrocarbon degradation in reservoirs. We find that crude-oil hydrocarbon degradation under methanogenic conditions in the laboratory mimics the characteristic sequential removal of compound classes seen in reservoir-degraded petroleum. The initial preferential removal of n-alkanes generates close to stoichiometric amounts of methane, principally by hydrogenotrophic methanogenesis. Our data imply a common methanogenic biodegradation mechanism in subsurface degraded oil reservoirs, resulting in consistent patterns of hydrocarbon alteration, and the common association of dry gas with severely degraded oils observed worldwide. Energy recovery from oilfields in the form of methane, based on accelerating natural methanogenic biodegradation, may offer a route to economic production of difficult-to-recover energy from oilfields.  相似文献   
7.
Larter SR  Solli H  Douglas AG  DE Lange F  DE Leeuw JW 《Nature》1979,279(5712):405-408
A SERIES of acylic isoprenoid alkanes, of which pristane and phytane are typical, frequently occurs in crude oils, shales, coals, bitumens and so on. It is generally agreed that the primary source of these compounds is the phytyl side chain of chlorophyll(1,2) although the mechanisms of its incorporation into sediments and its subsequent diagenesis, are not completely understood. At present, little is known about the role of kerogen as a source, or sink, of isoprenoid moieties and we report here that the principal isoprenoid, obtained by the high temperature (600 degrees C) pyrolysis of kerogens has been identified as prist-1-ene.  相似文献   
8.
生物降解作用对原油中苯并咔唑分布的影响   总被引:10,自引:0,他引:10  
黄海平  任芳祥  S.R.Larter 《科学通报》2002,47(16):1271-1275
对辽河盆地冷东油田冷43块沙三段油藏3口井岩芯抽提物的地球化学分析显示,生物降解作用不仅影响饱和烃生物标志物的含量和组成,对咔唑类非烃化合物有同样的控制作用,咔唑类化合物的降解方式与烃类化合物相似,其生物降解作用的程度受与油-水界面的距离控制,在油柱上苯并咔唑的绝对浓度略有增加后向油柱底部迅速降低,且苯并[a]咔唑最容易受微生物的影响,苯并[b]咔唑则有较强的抗生物降解作用能力,苯并[b]咔唑/苯并[a]咔唑比值可敏感指示原油遭受的生物降解作用程度,而苯并咔唑比值(BC比值)不适用于指示生物降解油的运移距离。  相似文献   
9.
Biological activity in the deep subsurface and the origin of heavy oil   总被引:8,自引:0,他引:8  
Head IM  Jones DM  Larter SR 《Nature》2003,426(6964):344-352
At temperatures up to about 80 degrees C, petroleum in subsurface reservoirs is often biologically degraded, over geological timescales, by microorganisms that destroy hydrocarbons and other components to produce altered, denser 'heavy oils'. This temperature threshold for hydrocarbon biodegradation might represent the maximum temperature boundary for life in the deep nutrient-depleted Earth. Most of the world's oil was biodegraded under anaerobic conditions, with methane, a valuable commodity, often being a major by-product, which suggests alternative approaches to recovering the world's vast heavy oil resource that otherwise will remain largely unproduced.  相似文献   
10.
碲锡铅(Pb1-xSnxTe)是一种禁带宽度可调的三元化合物半导体,用它不仅可制备814μm的高灵敏度的红外探测器,而且可以制备长波红外可调谐激光器.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号