首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
综合类   10篇
  2012年   1篇
  2011年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   2篇
  2002年   1篇
排序方式: 共有10条查询结果,搜索用时 19 毫秒
1
1.
The space environments--or magnetospheres--of magnetized planets emit copious quantities of energetic neutral atoms (ENAs) at energies between tens of electron volts to hundreds of kiloelectron volts (keV). These energetic atoms result from charge exchange between magnetically trapped energetic ions and cold neutral atoms, and they carry significant amounts of energy and mass from the magnetospheres. Imaging their distribution allows us to investigate the structure of planetary magnetospheres. Here we report the analysis of 50-80 keV ENA images of Jupiter's magnetosphere, where two distinct emission regions dominate: the upper atmosphere of Jupiter itself, and a torus of emission residing just outside the orbit of Jupiter's satellite Europa. The trans-Europa component shows that, unexpectedly, Europa generates a gas cloud comparable in gas content to that associated with the volcanic moon Io. The quantity of gas found indicates that Europa has a much greater impact than hitherto believed on the structure of, and the energy flow within, Jupiter's magnetosphere.  相似文献   
2.
Although there are substantial differences between the magnetospheres of Jupiter and Saturn, it has been suggested that cryovolcanic activity at Enceladus could lead to electrodynamic coupling between Enceladus and Saturn like that which links Jupiter with Io, Europa and Ganymede. Powerful field-aligned electron beams associated with the Io-Jupiter coupling, for example, create an auroral footprint in Jupiter's ionosphere. Auroral ultraviolet emission associated with Enceladus-Saturn coupling is anticipated to be just a few tenths of a kilorayleigh (ref. 12), about an order of magnitude dimmer than Io's footprint and below the observable threshold, consistent with its non-detection. Here we report the detection of magnetic-field-aligned ion and electron beams (offset several moon radii downstream from Enceladus) with sufficient power to stimulate detectable aurora, and the subsequent discovery of Enceladus-associated aurora in a few per cent of the scans of the moon's footprint. The footprint varies in emission magnitude more than can plausibly be explained by changes in magnetospheric parameters--and as such is probably indicative of variable plume activity.  相似文献   
3.
Broad regions on both sides of the solar wind termination shock are populated by high intensities of non-thermal ions and electrons. The pre-shock particles in the solar wind have been measured by the spacecraft Voyager 1 (refs 1-5) and Voyager 2 (refs 3, 6). The post-shock particles in the heliosheath have also been measured by Voyager 1 (refs 3-5). It was not clear, however, what effect these particles might have on the physics of the shock transition until Voyager 2 crossed the shock on 31 August-1 September 2007 (refs 7-9). Unlike Voyager 1, Voyager 2 is making plasma measurements. Data from the plasma and magnetic field instruments on Voyager 2 indicate that non-thermal ion distributions probably have key roles in mediating dynamical processes at the termination shock and in the heliosheath. Here we report that intensities of low-energy ions measured by Voyager 2 produce non-thermal partial ion pressures in the heliosheath that are comparable to (or exceed) both the thermal plasma pressures and the scalar magnetic field pressures. We conclude that these ions are the >0.028 MeV portion of the non-thermal ion distribution that determines the termination shock structure and the acceleration of which extracts a large fraction of bulk-flow kinetic energy from the incident solar wind.  相似文献   
4.
Strong discrete aurorae on Earth are excited by electrons, which are accelerated along magnetic field lines towards the planet. Surprisingly, electrons accelerated in the opposite direction have been recently observed. The mechanisms and significance of this anti-earthward acceleration are highly uncertain because only earthward acceleration was traditionally considered, and observations remain limited. It is also unclear whether upward acceleration of the electrons is a necessary part of the auroral process or simply a special feature of Earth's complex space environment. Here we report anti-planetward acceleration of electron beams in Saturn's magnetosphere along field lines that statistically map into regions of aurora. The energy spectrum of these beams is qualitatively similar to the ones observed at Earth, and the energy fluxes in the observed beams are comparable with the energies required to excite Saturn's aurora. These beams, along with the observations at Earth and the barely understood electron beams in Jupiter's magnetosphere, demonstrate that anti-planetward acceleration is a universal feature of aurorae. The energy contained in the beams shows that upward acceleration is an essential part of the overall auroral process.  相似文献   
5.
6.
Krimigis SM  Roelof EC  Decker RB  Hill ME 《Nature》2011,474(7351):359-361
Voyager 1 has been in the reservoir of energetic ions and electrons that constitutes the heliosheath since it crossed the solar wind termination shock on 16 December 2004 at a distance from the Sun of 94 astronomical units (1?AU = 1.5?×?10(8)?km). It is now ~22?AU past the termination shock crossing. The bulk velocity of the plasma in the radial-transverse plane has been determined using measurements of the anisotropy of the convected energetic ion distribution. Here we report that the radial component of the velocity has been decreasing almost linearly over the past three years, from ~70?km?s(-1) to ~0?km?s(-1), where it has remained for the past eight months. It now seems that Voyager 1 has entered a finite transition layer of zero-radial-velocity plasma flow, indicating that the spacecraft may be close to the heliopause, the border between the heliosheath and the interstellar plasma. The existence of a flow transition layer in the heliosheath contradicts current predictions--generally assumed by conceptual models--of a sharp discontinuity at the heliopause.  相似文献   
7.
Krimigis SM  Sergis N  Mitchell DG  Hamilton DC  Krupp N 《Nature》2007,450(7172):1050-1053
The concept of an electrical current encircling the Earth at high altitudes was first proposed in 1917 to explain the depression of the horizontal component of the Earth's magnetic field during geomagnetic storms. In situ measurements of the extent and composition of this current were made some 50 years later and an image was obtained in 2001 (ref. 6). Ring currents of a different nature were observed at Jupiter and their presence inferred at Saturn. Here we report images of the ring current at Saturn, together with a day-night pressure asymmetry and tilt of the planet's plasma sheet, based on measurements using the magnetospheric imaging instrument (MIMI) on board Cassini. The ring current can be highly variable with strong longitudinal asymmetries that corotate nearly rigidly with the planet. This contrasts with the Earth's ring current, where there is no rotational modulation and initial asymmetries are organized by local time effects.  相似文献   
8.
RB Decker  SM Krimigis  EC Roelof  ME Hill 《Nature》2012,489(7414):124-127
Over a two-year period, Voyager 1 observed a gradual slowing-down of radial plasma flow in the heliosheath to near-zero velocity after April 2010 at a distance of 113.5 astronomical units from the Sun (1 astronomical unit equals 1.5?×?10(8) kilometres). Voyager 1 was then about 20 astronomical units beyond the shock that terminates the free expansion of the solar wind and was immersed in the heated non-thermal plasma region called the heliosheath. The expectation from contemporary simulations was that the heliosheath plasma would be deflected from radial flow to meridional flow (in solar heliospheric coordinates), which at Voyager?1 would lie mainly on the (locally spherical) surface called the heliopause. This surface is supposed to separate the heliosheath plasma, which is of solar origin, from the interstellar plasma, which is of local Galactic origin. In 2011, the Voyager project began occasional temporary re-orientations of the spacecraft (totalling about 10-25 hours every 2 months) to re-align the Low-Energy Charged Particle instrument on board Voyager?1 so that it could measure meridional flow. Here we report that, contrary to expectations, these observations yielded a meridional flow velocity of +3?±?11?km?s(-1), that is, one consistent with zero within statistical uncertainties.  相似文献   
9.
The outer limit of the Solar System is often considered to be at the distance from the Sun where the solar wind changes from supersonic to subsonic flow. Theory predicts that a termination shock marks this boundary, with locations ranging from a few to over 100 au (1 Au approximately 1.5 x 10(8) km, the distance from Earth to the Sun). 'Pick-up ions' that originate as interstellar neutral atoms should be accelerated to tens of MeV at the termination shock, generating anomalous cosmic rays. Here we report a large increase in the intensity of energetic particles in the outer heliosphere, as measured by an instrument on the Voyager 1 spacecraft. We argue that the spacecraft exited the supersonic solar wind and passed into the subsonic region (possibly beyond the termination shock) on about 1 August 2002 at a distance of approximately 85 Au (heliolatitude approximately 34 degrees N), then re-entered the supersonic solar wind about 200 days later at approximately 87 au from the Sun. We show that the composition of the ions accelerated at the putative termination shock is that of anomalous cosmic rays and of interstellar pick-up ions.  相似文献   
10.
Several planetary missions have reported the presence of substantial numbers of energetic ions and electrons surrounding Jupiter; relativistic electrons are observable up to several astronomical units (au) from the planet. A population of energetic (>30[?]keV) neutral particles also has been reported, but the instrumentation was not able to determine the mass or charge state of the particles, which were subsequently labelled energetic neutral atoms. Although images showing the presence of the trace element sodium were obtained, the source and identity of the neutral atoms---and their overall significance relative to the loss of charged particles from Jupiter's magnetosphere---were unknown. Here we report the discovery by the Cassini spacecraft of a fast (>103[?]km[?]s-1) and hot magnetospheric neutral wind extending more than 0.5[?]au from Jupiter, and the presence of energetic neutral atoms (both hot and cold) that have been accelerated by the electric field in the solar wind. We suggest that these atoms originate in volcanic gases from Io, undergo significant evolution through various electromagnetic interactions, escape Jupiter's magnetosphere and then populate the environment around the planet. Thus a 'nebula' is created that extends outwards over hundreds of jovian radii.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号