首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
现状及发展   1篇
综合类   16篇
  2020年   1篇
  2018年   1篇
  2011年   3篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1999年   2篇
  1986年   1篇
  1980年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
2.
【目的】研究丛枝菌根(Arbuscular mycorrhiza,AM)真菌在喀斯特自然土壤条件下对喀斯特先锋草本植物根系的影响。【方法】通过自然土接种AM真菌(N)、灭菌土接种AM真菌(M)及灭菌土壤对照(S)共3种土壤处理,种植喀斯特先锋植物狗尾草(Setaria viridis)、荩草(Arthraxon hispidus)、鬼针草(Bidens pilosa)及狼杷草(Bidens tripartita),并测定它们的根系生物量、根长、根表面积、根体积、根平均直径、根尖数及根分枝数。【结果】荩草、鬼针草及狼杷草在N处理及M处理下具有较高的菌根侵染率,狗尾草的菌根侵染率较低。与S处理相比,M处理下AM真菌明显提高了荩草、鬼针草及狼杷草的根系生物量、根长、根表面积、根体积、根尖数、根分枝数及组织密度,降低了根平均直径、比根长、比根面积及比根体积;与M处理相比,N处理明显降低了荩草、鬼针草及狼杷草的根系生物量、根长、根表面积、根体积、根尖数、根分枝数及组织密度,提高了比根长、比根面积及比根体积,但对根平均直径无明显影响。【结论】荩草、鬼针草及狼杷草具有较高菌根侵染率,能与AM真菌共生获得更加发达的根系,而自然土壤削弱了AM真菌对荩草、鬼针草及狼杷草根系生长的促进作用。  相似文献   
3.
Anaerobic ammonium oxidation by anammox bacteria in the Black Sea   总被引:80,自引:0,他引:80  
The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean. Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N2 in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing the anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors. Nutrient profiles, fluorescently labelled RNA probes, 15N tracer experiments and the distribution of specific 'ladderane' membrane lipids indicate that ammonium diffusing upwards from the anoxic deep water is consumed by anammox bacteria below the oxic zone. This is the first time that anammox bacteria have been identified and directly linked to the removal of fixed inorganic nitrogen in the environment. The widespread occurrence of ammonium consumption in suboxic marine settings indicates that anammox might be important in the oceanic nitrogen cycle.  相似文献   
4.
Molecular mechanism of anaerobic ammonium oxidation   总被引:7,自引:0,他引:7  
Two distinct microbial processes, denitrification and anaerobic ammonium oxidation (anammox), are responsible for the release of fixed nitrogen as dinitrogen gas (N(2)) to the atmosphere. Denitrification has been studied for over 100 years and its intermediates and enzymes are well known. Even though anammox is a key biogeochemical process of equal importance, its molecular mechanism is unknown, but it was proposed to proceed through hydrazine (N(2)H(4)). Here we show that N(2)H(4) is produced from the anammox substrates ammonium and nitrite and that nitric oxide (NO) is the direct precursor of N(2)H(4). We resolved the genes and proteins central to anammox metabolism and purified the key enzymes that catalyse N(2)H(4) synthesis and its oxidation to N(2). These results present a new biochemical reaction forging an N-N bond and fill a lacuna in our understanding of the biochemical synthesis of the N(2) in the atmosphere. Furthermore, they reinforce the role of nitric oxide in the evolution of the nitrogen cycle.  相似文献   
5.
Methanotrophic symbionts provide carbon for photosynthesis in peat bogs   总被引:2,自引:0,他引:2  
Wetlands are the largest natural source of atmospheric methane, the second most important greenhouse gas. Methane flux to the atmosphere depends strongly on the climate; however, by far the largest part of the methane formed in wetland ecosystems is recycled and does not reach the atmosphere. The biogeochemical controls on the efficient oxidation of methane are still poorly understood. Here we show that submerged Sphagnum mosses, the dominant plants in some of these habitats, consume methane through symbiosis with partly endophytic methanotrophic bacteria, leading to highly effective in situ methane recycling. Molecular probes revealed the presence of the bacteria in the hyaline cells of the plant and on stem leaves. Incubation with (13)C-methane showed rapid in situ oxidation by these bacteria to carbon dioxide, which was subsequently fixed by Sphagnum, as shown by incorporation of (13)C-methane into plant sterols. In this way, methane acts as a significant (10-15%) carbon source for Sphagnum. The symbiosis explains both the efficient recycling of methane and the high organic carbon burial in these wetland ecosystems.  相似文献   
6.
7.
8.
Mud volcanoes, mudpots and fumaroles are remarkable geological features characterized by the emission of gas, water and/or semi-liquid mud matrices with significant methane fluxes to the atmosphere (10(-1) to 10(3) t y(-1)). Environmental conditions in these areas vary from ambient temperature and neutral pH to high temperatures and low pH. Although there are strong indications for biological methane consumption in mud volcanoes, no methanotrophic bacteria are known that would thrive in the hostile conditions of fumaroles (temperatures up to 70 degrees C and pH down to 1.8). The first step in aerobic methane oxidation is performed by a soluble or membrane-bound methane mono-oxygenase. Here we report that pmoA (encoding the beta-subunit of membrane-bound methane mono-oxygenase) clone libraries, made by using DNA extracted from the Solfatara volcano mudpot and surrounding bare soil near the fumaroles, showed clusters of novel and distant pmoA genes. After methanotrophic enrichment at 50 degrees C and pH 2.0 the most distant cluster, sharing less than 50% identity with any other described pmoA gene, was represented in the culture. Finally we isolated an acidiphilic methanotrophic bacterium Acidimethylosilex fumarolicum SolV belonging to the Planctomycetes/Verrucomicrobia/Chlamydiae superphylum, 'outside' the subphyla of the Alpha- and Gammaproteobacteria containing the established methanotrophs. This bacterium grows under oxygen limitation on methane as the sole source of energy, down to pH 0.8--far below the pH optimum of any previously described methanotroph. A. fumarolicum SolV has three different pmoA genes, with two that are very similar to sequences retrieved from the mudpot. Highly homologous environmental 16S rRNA gene sequences from Yellowstone Park show that this new type of methanotrophic bacteria may be a common inhabitant of extreme environments. This is the first time that a representative of the widely distributed Verrucomicrobia phylum, of which most members remain uncultivated, is coupled to a geochemically relevant reaction.  相似文献   
9.
Evidence for complete denitrification in a benthic foraminifer   总被引:2,自引:0,他引:2  
Benthic foraminifera are unicellular eukaryotes found abundantly in many types of marine sediments. Many species survive and possibly reproduce in anoxic habitats, but sustainable anaerobic metabolism has not been previously described. Here we demonstrate that the foraminifer Globobulimina pseudospinescens accumulates intracellular nitrate stores and that these can be respired to dinitrogen gas. The amounts of nitrate detected are estimated to be sufficient to support respiration for over a month. In a Swedish fjord sediment where G. pseudospinescens is the dominant foraminifer, the intracellular nitrate pool in this species accounted for 20% of the large, cell-bound, nitrate pool present in an oxygen-free zone. Similarly high nitrate concentrations were also detected in foraminifera Nonionella cf. stella and a Stainforthia species, the two dominant benthic taxa occurring within the oxygen minimum zone of the continental shelf off Chile. Given the high abundance of foraminifera in anoxic marine environments, these new findings suggest that foraminifera may play an important role in global nitrogen cycling and indicate that our understanding of the complexity of the marine nitrogen cycle is far from complete.  相似文献   
10.
Anaerobic ammonium oxidation (anammox) has become a main focus in oceanography and wastewater treatment. It is also the nitrogen cycle's major remaining biochemical enigma. Among its features, the occurrence of hydrazine as a free intermediate of catabolism, the biosynthesis of ladderane lipids and the role of cytoplasm differentiation are unique in biology. Here we use environmental genomics--the reconstruction of genomic data directly from the environment--to assemble the genome of the uncultured anammox bacterium Kuenenia stuttgartiensis from a complex bioreactor community. The genome data illuminate the evolutionary history of the Planctomycetes and allow us to expose the genetic blueprint of the organism's special properties. Most significantly, we identified candidate genes responsible for ladderane biosynthesis and biological hydrazine metabolism, and discovered unexpected metabolic versatility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号