首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
现状及发展   3篇
研究方法   4篇
综合类   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  1974年   1篇
  1966年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Aggressive behavior is pervasive throughout the animal kingdom, and yet very little is known about its molecular underpinnings. To address this problem, we have developed a population-based selection procedure to increase aggression in Drosophila melanogaster. We measured changes in aggressive behavior in the selected subpopulations with a new two-male arena assay. In only ten generations of selection, the aggressive lines became markedly more aggressive than the neutral lines. After 21 generations, the fighting index increased more than 30-fold. Using microarray analysis, we identified genes with differing expression levels in the aggressive and neutral lines as candidates for this strong behavioral selection response. We tested a small set of these genes through mutant analysis and found that one significantly increased fighting frequency. These results suggest that selection for increases in aggression can be used to molecularly dissect this behavior.  相似文献   
2.
Identifying the genes involved in polygenic traits has been difficult. In the 1950s and 1960s, laboratory selection experiments for extreme geotaxic behavior in fruit flies established for the first time that a complex behavioral trait has a genetic basis. But the specific genes responsible for the behavior have never been identified using this classical model. To identify the individual genes involved in geotaxic response, we used cDNA microarrays to identify candidate genes and assessed fly lines mutant in these genes for behavioral confirmation. We have thus determined the identities of several genes that contribute to the complex, polygenic behavior of geotaxis.  相似文献   
3.
Geleophysic dysplasia is an autosomal recessive disorder characterized by short stature, brachydactyly, thick skin and cardiac valvular anomalies often responsible for an early death. Studying six geleophysic dysplasia families, we first mapped the underlying gene to chromosome 9q34.2 and identified five distinct nonsense and missense mutations in ADAMTSL2 (a disintegrin and metalloproteinase with thrombospondin repeats-like 2), which encodes a secreted glycoprotein of unknown function. Functional studies in HEK293 cells showed that ADAMTSL2 mutations lead to reduced secretion of the mutated proteins, possibly owing to the misfolding of ADAMTSL2. A yeast two-hybrid screen showed that ADAMTSL2 interacts with latent TGF-beta-binding protein 1. In addition, we observed a significant increase in total and active TGF-beta in the culture medium as well as nuclear localization of phosphorylated SMAD2 in fibroblasts from individuals with geleophysic dysplasia. These data suggest that ADAMTSL2 mutations may lead to a dysregulation of TGF-beta signaling and may be the underlying mechanism of geleophysic dysplasia.  相似文献   
4.
Scott IC  Blitz IL  Pappano WN  Maas SA  Cho KW  Greenspan DS 《Nature》2001,410(6827):475-478
Twisted gastrulation (TSG) is involved in specifying the dorsal-most cell fate in Drosophila embryos, but its mechanism of action is poorly understood. TSG has been proposed to modify the action of Short gastrulation (SOG), thereby increasing signalling by the bone morphogenetic protein (BMP) Decapentaplegic. SOG, an inhibitor of BMP signalling, is in turn inactivated by the protease Tolloid. Here we identify Tsg gene products from human, mouse, Xenopus, zebrafish and chick. Expression patterns in mouse and Xenopus embryos are consistent with in vivo interactions between Tsg, BMPs and the vertebrate SOG orthologue, chordin. We show that Tsg binds both the vertebrate Decapentaplegic orthologue BMP4 and chordin, and that these interactions have multiple effects. Tsg increases chordin's binding of BMP4, potentiates chordin's ability to induce secondary axes in Xenopus embryos, and enhances chordin cleavage by vertebrate tolloid-related proteases at a site poorly used in Tsg's absence; also, the presence of Tsg enhances the secondary axis-inducing activity of two products of chordin cleavage. We conclude that Tsg acts as a cofactor in chordin's antagonism of BMP signalling.  相似文献   
5.
Greenspan NS 《Nature》2001,409(6817):137
  相似文献   
6.
When recombinant and cellular prion protein (PrP(C)) binds copper, it acquires properties resembling the scrapie isoform (PrP(Sc)), namely protease resistance, detergent insolubility and increased beta sheet content. However, whether the conformations of PrP(C) induced by copper and PrP(Sc) are similar has not been studied in great detail. Here, we use a panel of seven monoclonal antibodies to decipher the epitopes on full-length mouse PrP(C) that are affected by exogenous copper, and to compare the antigenicity of the copper-treated full-length PrP(C) with the full-length PrP(Sc) present in scrapie-infected mouse brains. In the presence of copper, we found that epitopes along residues 115-130 and 153-165 become more accessible on PrP(C). These regions correspond to the two beta sheet strands in recombinant PrP and they were proposed to be important for prion conversion. However, when we compared the antibody-binding patterns between full-length PrP(C) with full-length PrP(Sc) and between copper-treated full-length PrP(C) with full-length PrP(Sc), antibody binding to residues 143-155 and 175-185 was consistently increased on PrP(Sc). Collectively, our results suggest that copper-treated full-length PrP(C) does not resemble full-length PrP(Sc), despite acquiring PrP(Sc)-like properties. In addition, since each full-length protein reacts distinctively to some of the antibodies, this binding pattern could discriminate between PrP(C) and PrP(Sc).  相似文献   
7.
Shaw PJ  Tononi G  Greenspan RJ  Robinson DF 《Nature》2002,417(6886):287-291
Sleep is controlled by two processes: a homeostatic drive that increases during waking and dissipates during sleep, and a circadian pacemaker that controls its timing. Although these two systems can operate independently, recent studies indicate a more intimate relationship. To study the interaction between homeostatic and circadian processes in Drosophila, we examined homeostasis in the canonical loss-of-function clock mutants period (per(01)), timeless (tim(01)), clock (Clk(jrk)) and cycle (cyc(01)). cyc(01) mutants showed a disproportionately large sleep rebound and died after 10 hours of sleep deprivation, although they were more resistant than other clock mutants to various stressors. Unlike other clock mutants, cyc(01) flies showed a reduced expression of heat-shock genes after sleep loss. However, activating heat-shock genes before sleep deprivation rescued cyc(01) flies from its lethal effects. Consistent with the protective effect of heat-shock genes, was the observation that flies carrying a mutation for the heat-shock protein Hsp83 (Hsp83(08445)) showed exaggerated homeostatic response and died after sleep deprivation. These data represent the first step in identifying the molecular mechanisms that constitute the sleep homeostat.  相似文献   
8.
Zusammenfassung Corynebacterium simplex oxydiert Fusidinsäure, ein Antibioticum ausFusidium coccineum, zu 3-Oxofusidinsäure.  相似文献   
9.
Zusammenfassung Die mikrobiologische 1-Hydroxylierung vond-Norgestrel und Norethisteron durch den MikroorganismusBotryodiplodia malorum wird beschrieben. Ausserdem wurde 11-Hydroxynorethisteron isoliert und charakterisiert.

Acknowledgement. The authors want to express their appreciation to Dr.H. Smith for advice and encouragement through the course of this work. We wish to thank Dr.T. Chang, Dr.C. Hetzel and Mr.C. Kuhlman for obtaining and interpreting the mass spectra and Mr.B. Hormann for NMR decoupling experiments and analytical services.  相似文献   
10.
Both serotonin (5-HT) and neuropeptide Y have been shown to affect a variety of mammalian behaviors, including aggression. Here we show in Drosophila melanogaster that both 5-HT and neuropeptide F, the invertebrate homolog of neuropeptide Y, modulate aggression. We show that drug-induced increases of 5-HT in the fly brain increase aggression. Elevating 5-HT genetically in the serotonergic circuits recapitulates these pharmacological effects, whereas genetic silencing of these circuits makes the flies behaviorally unresponsive to the drug-induced increase of 5-HT but leaves them capable of aggression. Genetic silencing of the neuropeptide F (npf) circuit also increases fly aggression, demonstrating an opposite modulation to 5-HT. Moreover, this neuropeptide F effect seems to be independent of 5-HT. The implication of these two modulatory systems in fly and mouse aggression suggest a marked degree of conservation and a deep molecular root for this behavior.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号