首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2005年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有3条查询结果,搜索用时 78 毫秒
1
1.
Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain   总被引:34,自引:0,他引:34  
Liu Z  Sun C  Olejniczak ET  Meadows RP  Betz SF  Oost T  Herrmann J  Wu JC  Fesik SW 《Nature》2000,408(6815):1004-1008
The inhibitor-of-apoptosis proteins (IAPs) regulate programmed cell death by inhibiting members of the caspase family of enzymes. Recently, a mammalian protein called Smac (also named DIABLO) was identified that binds to the IAPs and promotes caspase activation. Although undefined in the X-ray structure, the amino-terminal residues of Smac are critical for its function. To understand the structural basis for molecular recognition between Smac and the IAPs, we determined the solution structure of the BIR3 domain of X-linked IAP (XIAP) complexed with a functionally active nine-residue peptide derived from the N terminus of Smac. The peptide binds across the third beta-strand of the BIR3 domain in an extended conformation with only the first four residues contacting the protein. The complex is stabilized by four intermolecular hydrogen bonds, an electrostatic interaction involving the N terminus of the peptide, and several hydrophobic interactions. This structural information, along with the binding data from BIR3 and Smac peptide mutants reported here, should aid in the design of small molecules that may be used for the treatment of cancers that overexpress IAPs.  相似文献   
2.
Proteins in the Bcl-2 family are central regulators of programmed cell death, and members that inhibit apoptosis, such as Bcl-X(L) and Bcl-2, are overexpressed in many cancers and contribute to tumour initiation, progression and resistance to therapy. Bcl-X(L) expression correlates with chemo-resistance of tumour cell lines, and reductions in Bcl-2 increase sensitivity to anticancer drugs and enhance in vivo survival. The development of inhibitors of these proteins as potential anti-cancer therapeutics has been previously explored, but obtaining potent small-molecule inhibitors has proved difficult owing to the necessity of targeting a protein-protein interaction. Here, using nuclear magnetic resonance (NMR)-based screening, parallel synthesis and structure-based design, we have discovered ABT-737, a small-molecule inhibitor of the anti-apoptotic proteins Bcl-2, Bcl-X(L) and Bcl-w, with an affinity two to three orders of magnitude more potent than previously reported compounds. Mechanistic studies reveal that ABT-737 does not directly initiate the apoptotic process, but enhances the effects of death signals, displaying synergistic cytotoxicity with chemotherapeutics and radiation. ABT-737 exhibits single-agent-mechanism-based killing of cells from lymphoma and small-cell lung carcinoma lines, as well as primary patient-derived cells, and in animal models, ABT-737 improves survival, causes regression of established tumours, and produces cures in a high percentage of the mice.  相似文献   
3.
NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP.   总被引:40,自引:0,他引:40  
C Sun  M Cai  A H Gunasekera  R P Meadows  H Wang  J Chen  H Zhang  W Wu  N Xu  S C Ng  S W Fesik 《Nature》1999,401(6755):818-822
The inhibitor-of-apoptosis (IAP) family of proteins, originally identified in baculoviruses, regulate programmed cell death in a variety of organisms. IAPs inhibit specific enzymes (caspases) in the death cascade and contain one to three modules of a common 70-amino-acid motif called the BIR domain. Here we describe the nuclear magnetic resonance structure of a region encompassing the second BIR domain (BIR2) of a human IAP family member, XIAP (also called hILP or MIHA). The structure of the BIR domain consists of a three-stranded antiparallel beta-sheet and four alpha-helices and resembles a classical zinc finger. Unexpectedly, conserved amino acids within the linker region between the BIR1 and BIR2 domains were found to be critical for inhibiting caspase-3. The absence or presence of these residues may explain the differences in caspase inhibition observed for different truncated and full-length IAPs. Our data further indicate that these residues may bind to the active site and that the BIR domain may interact with an adjacent site on the enzyme.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号