首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
现状及发展   10篇
综合类   5篇
自然研究   1篇
  2011年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1998年   1篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1966年   1篇
排序方式: 共有16条查询结果,搜索用时 218 毫秒
1.
2.
3.
Mitochondria play a critical role in mediating both apoptotic and necrotic cell death. The mitochondrial permeability transition (mPT) leads to mitochondrial swelling, outer membrane rupture and the release of apoptotic mediators. The mPT pore is thought to consist of the adenine nucleotide translocator, a voltage-dependent anion channel, and cyclophilin D (the Ppif gene product), a prolyl isomerase located within the mitochondrial matrix. Here we generated mice lacking Ppif and mice overexpressing cyclophilin D in the heart. Ppif null mice are protected from ischaemia/reperfusion-induced cell death in vivo, whereas cyclophilin D-overexpressing mice show mitochondrial swelling and spontaneous cell death. Mitochondria isolated from the livers, hearts and brains of Ppif null mice are resistant to mitochondrial swelling and permeability transition in vitro. Moreover, primary hepatocytes and fibroblasts isolated from Ppif null mice are largely protected from Ca2+-overload and oxidative stress-induced cell death. However, Bcl-2 family member-induced cell death does not depend on cyclophilin D, and Ppif null fibroblasts are not protected from staurosporine or tumour-necrosis factor-alpha-induced death. Thus, cyclophilin D and the mitochondrial permeability transition are required for mediating Ca2+- and oxidative damage-induced cell death, but not Bcl-2 family member-regulated death.  相似文献   
4.
Summary It has been tested whether juvenile hormone plays a role in the larval-adult transformation of lateral oviducts in the milkweed bug. The transformation is ecdysteroid-dependent, as was reported previously2. Application of precocene or juvenile hormone III proved that the absence of juvenile hormone is required.Acknowledgments. This work was supported by a grant (Do 163/91) of the DFG. We thank Ms C. Friederichs for excellent technical support.  相似文献   
5.
6.
Summary Pseudomonas aeruginosa was recognized as the causative organism of an epidemic disease occurring in a laboratory breed ofOncopeltus fasciatus. The infection probably occurs peroral and is favoured by high temperature and humidity.Pseudomonas aeruginosa destroys the fat body of the bug.For her interest and discussion I thank Dr.G. Hausner, Miss I. vonGraevenitz and Miss.H. Schilling gave techincal support.  相似文献   
7.
SET domain proteins modulate chromatin domains in eu- and heterochromatin   总被引:1,自引:0,他引:1  
The SET domain is a 130-amino acid, evolutionarily conserved sequence motif present in chromosomal proteins that function in modulating gene activities from yeast to mammals. Initially identified as members of the Polycomb- and trithorax-group (Pc-G and trx-G) gene families, which are required to maintain expression boundaries of homeotic selector (HOM-C) genes, SET domain proteins are also involved in position-effect-variegation (PEV), telomeric and centromeric gene silencing, and possibly in determining chromosome architecture. These observations implicate SET domain proteins as multifunctional chromatin regulators with activities in both eu- and heterochromatin – a role consistent with their modular structure, which combines the SET domain with additional sequence motifs of either a cysteine-rich region/zinc-finger type or the chromo domain. Multiple functions for chromatin regulators are not restricted to the SET protein family, since many trx-G (but only very few Pc-G) genes are also modifiers of PEV. Together, these data establish a model in which the modulation of chromatin domains is mechanistically linked with the regulation of key developmental loci (e.g. HOM-C).  相似文献   
8.
9.
Summary (–)-Longifolene,4, and a new secolongifolane derivative, shown to possess structure5, have been isolated fromHelminthosporium sativum andH. victoriae.  相似文献   
10.
The discovery of artemisinin more than 30 years ago provided a completely new antimalarial structural prototype; that is, a molecule with a pharmacophoric peroxide bond in a unique 1,2,4-trioxane heterocycle. Available evidence suggests that artemisinin and related peroxidic antimalarial drugs exert their parasiticidal activity subsequent to reductive activation by haem, released as a result of haemoglobin digestion by the malaria-causing parasite. This irreversible redox reaction produces carbon-centred free radicals, leading to alkylation of haem and proteins (enzymes), one of which--the sarcoplasmic-endoplasmic reticulum ATPase PfATP6 (ref. 7)--may be critical to parasite survival. Notably, there is no evidence of drug resistance to any member of the artemisinin family of drugs. The chemotherapy of malaria has benefited greatly from the semi-synthetic artemisinins artemether and artesunate as they rapidly reduce parasite burden, have good therapeutic indices and provide for successful treatment outcomes. However, as a drug class, the artemisinins suffer from chemical (semi-synthetic availability, purity and cost), biopharmaceutical (poor bioavailability and limiting pharmacokinetics) and treatment (non-compliance with long treatment regimens and recrudescence) issues that limit their therapeutic potential. Here we describe how a synthetic peroxide antimalarial drug development candidate was identified in a collaborative drug discovery project.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号