首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合类   4篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
对V-N微合金化Q550D高强度中厚板进行了控轧控冷工艺试验,研究了沿厚度方向不同位置的显微组织,并测定了其综合力学性能.结果表明:V-N微合金化Q550D中厚板显微组织为多边形铁素体+针状铁素体,表面至心部的平均晶粒尺寸逐渐增大,针状铁素体的质量分数逐渐减少,20~30 nm的(Ti,V)N及小于10 nm的V(C,N)析出物弥散地分布在多边形铁素体和针状铁素体基体上;试验钢屈服强度、抗拉强度、断后延伸率、-20℃冲击功分别为651 MPa,733 MPa,18%,170 J;细晶强化、析出强化、位错强化、固溶强化、针状铁素体组织强化为主要的强化机制;晶粒细化、低C成分设计、针状铁素体组织的形成为主要的韧化机制.  相似文献   
2.
热轧窄带钢的三点差是反映其质量状况的重要指标之一,三点差的精度和分布状态受轧辊材质、轧辊表面磨损状况、热膨胀系数等多方面因素的影响.通过优化加热炉加热制度、优化粗轧孔型系统、增加立轧孔的深度、减小道次压下率、提高终轧温度、优化轧辊冷却系统等方式,解决了热轧窄带钢三点差超标的问题.  相似文献   
3.
对低碳中锰Q690F高强韧中厚板进行了控扎控冷和热处理工艺试验,观察了显微组织,测定了拉伸和冲击性能,并阐述了其强韧化机制.结果表明:中锰钢的显微组织为亚微米尺度的回火马氏体+逆转变奥氏体的复合层状组织.中锰中厚板1/4厚度位置的屈服强度、抗拉强度、延伸率、-60℃冲击功分别为725MPa,840MPa,27.7%,130J.逆转变奥氏体发生相变诱导塑性(TRIP)效应产生的应变硬化是中锰钢主要的强化机制;TRIP效应吸收大量的应变能,推迟颈缩,增加均匀延伸率,是中锰钢主要的增塑机制;TRIP效应有效地提高了裂纹形成功和裂纹扩展功,是中锰钢主要的韧化机制.  相似文献   
4.
利用GPS-100高频疲劳试验机,研究了高强韧低碳中锰钢的三点弯曲疲劳性能,绘制出S-N曲线并分析了疲劳断口特征,探讨了相变诱导塑性(TRIP)效应对试验钢疲劳性能的影响机理.结果表明:试验钢的条件疲劳极限为1006MPa,疲劳比为1.20;试验钢的疲劳裂纹源萌生于试样下表面靠近棱角的位置,疲劳裂纹扩展区存在大量的二次裂纹可有效降低主裂纹的扩展速率,提高试验钢的疲劳强度;瞬断区包含等轴韧窝和拉长的韧窝,是典型的韧性断裂.疲劳裂纹前沿微小塑性变形区内的残余奥氏体发生TRIP效应,吸收大量应变能,钝化裂纹,减缓裂纹的扩展速率,是试验钢疲劳性能优异的主要原因.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号