首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
综合类   5篇
  2020年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
超快冷却条件下温度场数值模拟   总被引:3,自引:3,他引:0  
从导热微分方程数值差分解法入手,对轧件在粗轧和精轧之间进行超快冷却后的温度场进行了数值模拟·结果表明:当板坯初始温度为1200℃,经过6道次粗轧后,以3m/s的速度进入超快冷却区,当水冷换热系数为10kW/(m2·℃)时可以得到70℃/s的冷却速度;另外由于超冷后表面温度的强烈回复,故在进行精轧时,必须进行温度修正,保证轧件在精轧区开轧温度的精度·  相似文献   
2.
对H型钢超快速冷却设备作了简要介绍.通过基础自动化中信号传递和液压缸的协同工作,使超快冷系统能适应不同规格H型钢的冷却要求.根据钢种开发及生产工艺要求,针对超快速冷却过程,建立了空冷和水冷温降模型.通过模块化设计,实现了过程温度的控制;通过模型自学习,使超快速冷却工艺逐步合理.从运行情况来看,腹板和翼缘温度差值可以降至30℃,协同工作的两个液压缸中磁尺数值大致吻合,从而使超快速冷却系统具有良好的可控性以及高精度和低故障率.  相似文献   
3.
为实现卷取温度模型水冷换热学习系数和奥氏体相变速率学习系数的在线实时滚动优化,采用数学方法对带钢段间温度自适应进行研究.首先,构建一个以带钢段初始学习系数为重心的等边三角形,基于各顶点对应的学习系数,分别利用带钢温度模型预报卷取温度,从而获得学习系数对卷取温度的一阶偏导数增益;接着,根据带钢段实测卷取温度与模型预报值的偏差计算学习系数增量部分的瞬时值,并依据学习速率进行学习计算、有效性检查和平滑处理.最后,将学习系数增量值应用于卷取温度动态设定模型,对冷却区内的所有带钢段的冷却规程进行更新.实际应用表明,卷取温度段间自适应方法能够快速响应轧制速度的变化,对卷取温度进行高精度控制.  相似文献   
4.
根据现场实测带钢温度值,采用温度场反算方法计算了热轧带钢层流冷却之后卷取之前的发射率.主要分析了材料碳当量、带钢厚度、带钢所处的温度区间对发射率的影响.结果表明:带钢所处的温度区间不同,影响带钢发射率的因素不同.在高于550℃的温度区间,不同材质的带钢,其发射率在08±01之间,随材料碳当量的增加,带钢发射率稍微增大,与带钢厚度没有明显的关系;在低于550℃的温度区间,不同材质的带钢,其发射率与碳当量没有明显的关系,但随带钢厚度的增大显著降低.  相似文献   
5.
通过直接淬火、QP、回火等工艺对一种低碳含铜钢进行热处理,并使用拉伸试验机、落锤冲击试验机、扫描电镜、电子探针、X射线衍射、透射电镜等手段对其力学性能、显微组织和冲击性能进行表征.在连续冷却淬火过程中观察到碳在马氏体和残余奥氏体间的动态配分现象,QP处理和低温回火可改善实验钢的冲击韧性;实验钢综合力学性能良好:强塑积大于20 GPa%,抗拉强度超过1 400 MPa,延伸率约14%,室温冲击功高于40 J.结果表明,所开发的实验钢可以满足热冲压工艺对成形淬火一体化的要求,可作为具有高强塑积的热成形用钢.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号