首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
综合类   1篇
  2020年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
为提高蝙蝠算法进行特征选择的正确率,提出全局混沌蝙蝠优化算法(GCBA).首先,GCBA采用混沌映射方法使种群的初始化能够遍历整个解空间,获取蝙蝠初始的最优位置,使其具有更加丰富的种群,解决了初始化种群随机性的问题.同时,GCBA引入当前粒子的最优解和当前种群的最优解跳出局部最优解,可有效避免算法早熟,有利于提高算法的全局搜索能力.蝙蝠算法(BA)、粒子群算法(PSO)与遗传算法(GA)在10个数据集上的测试结果表明,所提算法具有更高的分类精度和更强的跳出局部最优的能力.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号