首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
综合类   5篇
  2014年   3篇
  2006年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
近地空间环境(如热层、电离层)对空间系统的危害很大。航天器电源系统必须在从发射到寿命终结的整个任务阶段经受住空间环境的考验,达到各项性能指标要求。为达到此目的,空间研究机构如NASA等已对通用设计准则进行研究并形成了文件。太阳电池阵直接暴露在空间环境中,故极易损坏。事实上,多数情况下,太阳电池阵的损坏情况决定了航天器的寿命。  相似文献   
2.
1卫星系统 典型通信卫星平台包括下列系统。 1.1通信和数据处理系统通信和数据处理系统执行3个独立功能:接收和解调从地面站通过指令链路发射给卫星的信息;通过数据链路发送记录(遥控)数据或实时数据至地面接收站;通过遥测链路发送平台设备数据和其他遥测数据至地面站。  相似文献   
3.
随着卫星姿态控制系统对控制精度、鲁棒性和抗干扰要求的不断提高,将模糊神经网络控制引入到三轴稳定卫星的姿态控制中,并采用基于时差(TD)法的再励学习来解决模糊神经网络参数在线调整的问题,可以在无需训练样本的前提下实现控制器的在线学习. 仿真结果表明,这种结合再励学习的控制算法不仅可以满足对姿态控制精度的要求,有效地抵制了外界干扰,并对卫星的不确定性有较强的鲁棒性.  相似文献   
4.
1卫星稳定法 卫星的在轨稳定可由下述主动或被动方法获得。 1.1重力梯度 重力梯度是一种被动稳定方法,有时用于LEO小卫星。作用在卫星上最靠近和最远离地球的部件上的引力差形成一个力矩,该力矩维持卫星姿态与当地铅垂线一致。为得到足够的力矩,需在卫星上安装长杆。由于地球同步轨道上的引力差为零,故该法不适用于地球同步卫星。  相似文献   
5.
基于Q-学习的卫星姿态在线模糊神经网络控制   总被引:1,自引:0,他引:1  
将模糊神经网络控制引入到三轴稳定卫星的姿态控制中,结合Q-学习和BP神经网络来解决模糊神经网络参数在线调整问题,在无需训练样本的前提下实现控制器的在线学习. 仿真结果表明,这种基于Q-学习的模糊神经网络控制不仅可以满足对姿态控制精度的要求,还有效地抵制了外界干扰,提高了姿态稳定度,对卫星的不确定性有较强的鲁棒性.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号