首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合类   4篇
  2012年   1篇
  2009年   2篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
对比了流量计射流元件、涡腔自激振荡射流元件和附壁振荡射流元件的结构和工作原理,其中附壁振荡射流元件具有振荡频率可调节的特点,为了将该元件应用到液气射流泵内,以振荡射流这种新的形式进行工作,对该射流元件产生的振荡射流频率范围进行了分析,由测量元件壁面压力脉动的方法获得附壁振荡频率.结果表明:射流元件在结构尺寸固定,工作压力一定时,信号水流量和信号水导管长度存在合适的范围使元件正常工作,当超出该范围时,射流元件的主射流散乱;当工作压力范围为200~450 kPa,信号水导管长度范围为300~1 000 mm,信号水流量范围为160~425 g.min-1时,获得的附壁振荡频率范围为0.8~2.7 Hz;提高附壁振荡频率方法之一是减小元件的结构尺寸.  相似文献   
2.
基于附壁射流理论的全射流喷头射流元件设计   总被引:2,自引:0,他引:2  
采用附壁点模型及控制面模型分析射流附壁模型,推导出附壁半径,以及对应各种位差时的附壁距离的计算方法.编程对10PXH,30PXH隙控式全射流喷头射流元件的附壁半径、附壁距离进行了初步计算,计算结果与实际采用的结构尺寸基本吻合,可以用来指导射流元件的结构设计.并利用木村模型对射流核心区域的流动进行了分析,核心区域的计算结果表明射流元件内附壁现象基本上发生在初始段内.  相似文献   
3.
液气射流泵内部流场的数值计算   总被引:7,自引:1,他引:6  
通过闪频仪观测,泵内部流动可分为分层流、液滴流和泡状流.为了简化模拟和计算,将计算区域分为部分喉管和扩散管两块.对液气射流泵喉管内部射流流动,建立抛物型流动方程组,采用控制容积法将方程组离散,并用TDMA法求解;对扩散管内部泡状流,采用双流体模型建立液气两相流方程组,混合有限分析法离散,压力耦合半隐式方法(SIMPLE)求解.数值模拟获得液气射流泵内部流速分布.计算预测的射流碎裂位置与试验观测结果一致;壁面压力分布计算值与试验值吻合较好,趋势相近.计算结果能够较好地反映液气射流泵外部水力性能,为液气射流泵的优化设计与运行提供参考.  相似文献   
4.
对面积比为2.78和4.94的射流泵分别进行了试验,测得不同空化工况下在喉管不同位置补气时噪声和振动的变化.试验结果表明,不同空化阶段在喉管的任何位置补气,都可以降低射流泵的空化噪声和振动;随着补气量的增加,空化噪声和轴向振动加速度的降低也越明显,噪声的最大降低值可达5.1 dB,轴向振动加速度最大可降低4.3 m/s2;补气可以改善射流泵喉管内的压力分布,破坏极限工况下流动的臃塞现象,提高射流泵的空化性能;在喉管最低压力点处及邻近上游位置补气可更有效地抑制射流泵的空化,最优的补气位置为距喉管入口的1~3倍喉管直径处.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号