首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
综合类   5篇
  2023年   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
天然气水合物的表面形貌和性质一直是水合物研究领域的基础科学问题,它不仅制约人工环境下油气管线内水合物颗粒间聚集以及颗粒与管壁接触并阻塞管道的程度,而且还影响自然环境下水合物与沉积物骨架颗粒间接触关系以及相应的内聚力和摩擦角.本文首次运用原子力显微镜(AFM)对不同温度和不同界面合成的四氢呋喃(THF)水合物进行了表征,分析了温度和接触界面对其表面特征的影响.结果表明:在气-液界面自由生长的多晶THF水合物,生长温度越低,晶粒尺寸越小并更容易出现不定形水合物.晶粒界面的横截面呈"V"字形,其宽度和深度随生长温度降低而减小.在固-液界面受限生长的多晶THF水合物,其表面形貌和粗糙度除了受生长温度影响外还与接触的固体介质有关.当生长温度较高时晶粒尺寸较大,晶粒界面清晰可见;但生长温度较低时接触介质表面性质会影响二者分离后水合物表面形貌,如会出现微孔洞等结构且粗糙度变大,观察不到晶粒界面.这一发现对解释水合物沉积物残余强度特征与机制具有重要启示意义.  相似文献   
2.
由于天然气水合物仅在高压低温条件下稳定存在,为了保持水合物稳定,在钻井过程中宜采用低温钻井液,而在低温条件下钻井液能否对井底岩石表层起到软化作用,对于提高机械钻速具有重要意义。在分析钻井液对井底岩石表层软化作用机制的基础上,较系统地建立低温钻井液软化井底岩石表层定量评价方法,以清水为对比浆液,通过试验将6种水合物地层模拟钻井液(分别含有质量分数为0.1%的表面活性剂和有机盐处理剂)在低温条件下对薄片砂岩试样的软化效果进行对比。结果表明:相比于两种有机盐处理剂,含表面活性剂的4种模拟钻井液在低温条件下对岩样软化效果更好,有利于提高岩石破碎效率和机械钻速;4种含表面活性剂钻井液中,含十二烷基硫酸钠(SDS)钻井液对岩样的软化效果最好。  相似文献   
3.
泡沫金属材料在防护吸能领域有着重要的应用前景,深入研究泡沫金属及其相关结构的冲击力学性能十分必要。通过Φ50 mm的分离式霍普金森杆(split Hopkinson pressure bar, SHPB)装置对开孔泡沫金属Fe、Ni、Fe-Ni合金(50 mm×10 mm)进行动态冲击试验。试验分析了应变和应变率对其力学性能及吸能特性的影响,通过对其峰值应力、波动应力、理想吸能效率等参数的对比分析多种冲击速度下不同泡沫金属材料的抗压强度与吸能性,为建筑、航天等工程的使用提供理论基础。研究结果表明:高冲击速度下峰值应力增大且Fe-Ni合金抗压强度最高,不同材料泡沫金属均存在波动应力且压密阶段时间各不相同。应变率介于600~1 150时泡沫金属Ni吸能性最优,该区间外Fe-Ni合金更优。当应变率大于1 000时,Fe-Ni合金理想吸能效率增幅较大,相较于700时提高了48%、为最优理想吸能材料。  相似文献   
4.
水合物钻井液体系中的纳米颗粒可有效维持井壁稳定并降低钻井液对储层的侵入,但对水合物形成和生长的影响具有不确定性。在相同试验条件(5.0℃,5.0 MPa)下,对蒸馏水及模拟钻井液中CH_4水合物形成的诱导时间、形成量及形成速率进行测试研究,并结合多种试验方法揭示影响机制,模拟钻井液配方为蒸馏水+亲水纳米SiO_2(粒径为30和50 nm,加量为1.0%~5.0%)。结果表明:粒径为50 nm的亲水纳米SiO_2颗粒在模拟钻井液中加量为4.0%时对CH_4水合物的形成具有较强的抑制能力,相比于蒸馏水,这一体系中水合物形成诱导时间延长了74%,形成量减少了21%,形成速率降低了56%。  相似文献   
5.
随着全世界越来越多国家对天然气水合物勘探与开发的青睐,相关钻井技术也得到了日益重视。针对水合物地层的钻井特点,结合现有的纳米材料,通过大量实验优选出一种适合海洋天然气水合物地层钻井用的纳米Si O2钻井液:海水+2%纳米Si O2+3%膨润土+1%Na-CMC(羧甲基纤维素钠)+3%SMP-2(磺甲基酚醛树脂)+1%PVP(K90)(聚乙烯吡咯烷酮)+2%KCl(氯化钾);并对其低温性能和水合物生成抑制性进行了实验评价。实验结果表明,该钻井液具有适中的密度、良好的低温流变性和泥页岩水化抑制性;并能够长时间有效抑制水合物地层分解气在钻井液循环系统中重新生成水合物,有利保障在含水合物不稳定地层中钻井的顺利实施。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号