首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2022年   2篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
为研究烟囱效应作用下高海拔超长公路隧道的横通道间距及宽度等设计参数,以天山胜利隧道为例,运用火灾动力学模型FDS建立了不同坡度的高海拔公路隧道三维火灾燃烧模型,分析了高海拔隧道火灾温度及烟气的分布规律,给出了隧道内火灾模式下人员的可用安全疏散时间。考虑了高海拔及烟气对疏散速度折减、人体特征、车辆类型及载客量等因素,采用三维人员仿真模型Pathfinder建立了不同隧道横通道间距与宽度组合下的人员疏散模型,得到人员的必需安全疏散时间。基于安全疏散准则,给出了不同坡度下天山胜利隧道横通道的设计间距及宽度推荐值。结果表明:①隧道坡度越大,烟囱效应越明显,火源上坡方向温度上升及可视度下降速度越快,可用安全疏散时间越少;②隧道坡度为0.5%、1%、1.367%以及1.8%时,距离火源上游250m处的可用安全疏散时间分别为496s、456s、430s和415s。;③天山胜利隧道儿童、成年男性、成年女性及老人的疏散速度分别为0.72m/s、1.07m/s、0.91m/s和0.65m/s;④当隧道坡度为0.5%、1.0%、1.367%和1.8%时,建议横通道间距(宽度)分别设置为250m(2m)、250m(2.2m)、220m(2m)和220m(2.2m)。  相似文献   
2.
天山胜利隧道全长22km,是目前世界最长的在建高海拔高速公路隧道。本文采用FDS火灾动力学计算模型模拟了不同通风条件下海拔高度2850m的天山胜利隧道火灾发展过程,明确了不同通风条件下天山胜利隧道内火灾烟流的扩散规律以及温度的时空分布规律,提出了主隧道烟气的控制标准。结果表明:①考虑天山胜利隧道车型比例、多车辆串燃以及高海拔环境等因素,确定天山胜利隧道火灾火源规模折减为22MW;②当隧道不通风时,火源上方拱顶温度由于隧道坡度影响,具有明显先增大后衰减的趋势,相比于无坡度条件下,前者达到最高温度快,且最高温度低;③隧道内温度随着通风速度的增加和远离火源而降低,隧道内可视度随着远离火源先增加后减小、随着风速增加而增大;④随着风速增加,人眼特征高度处温度高于60℃、可视度低于10m的范围逐渐减少;⑤主隧道坡度为1.367%对应的火灾控烟临界风速为4m/s,横通道坡度为-7.5%时无通风条件下进本无烟气进入。  相似文献   
3.
大滞后特性处理的研究和比较   总被引:1,自引:0,他引:1  
针对一、二阶加大滞后对象,对滞后项分别进行一阶Pade逼近、二阶对称Pade逼近,二阶非对称Pade逼近和全极点逼近。分析研究了开环,闭环系统中带有滞后的问题,并通过几种近似方法与理论输出值的ISE值来比较各种逼近方法的精度。同时提出在计算过程中对滞后处理的改进方法,通过仿真进行比较,使得误差大大减小,精度提高。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号