首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
研究方法   1篇
综合类   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Genetic analysis of the mouse brain proteome   总被引:24,自引:0,他引:24  
Proteome analysis is a fundamental step in systematic functional genomics. Here we have resolved 8,767 proteins from the mouse brain proteome by large-gel two-dimensional electrophoresis. We detected 1,324 polymorphic proteins from the European collaborative interspecific backcross. Of these, we mapped 665 proteins genetically and identified 466 proteins by mass spectrometry. Qualitatively polymorphic proteins, to 96%, reflect changes in conformation and/or mass. Quantitatively polymorphic proteins show a high frequency (73%) of allele-specific transmission in codominant heterozygotes. Variations in protein isoforms and protein quantity often mapped to chromosomal positions different from that of the structural gene, indicating that single proteins may act as polygenic traits. Genetic analysis of proteomes may detect the types of polymorphism that are most relevant in disease-association studies.  相似文献   
2.
Evidence for enhanced mixing over rough topography in the abyssal ocean   总被引:6,自引:0,他引:6  
The overturning circulation of the ocean plays an important role in modulating the Earth's climate. But whereas the mechanisms for the vertical transport of water into the deep ocean--deep water formation at high latitudes--and horizontal transport in ocean currents have been largely identified, it is not clear how the compensating vertical transport of water from the depths to the surface is accomplished. Turbulent mixing across surfaces of constant density is the only viable mechanism for reducing the density of the water and enabling it to rise. However, measurements of the internal wave field, the main source of energy for mixing, and of turbulent dissipation rates, have typically implied diffusivities across surfaces of equal density of only approximately 0.1 cm2 s(-1), too small to account for the return flow. Here we report measurements of tracer dispersion and turbulent energy dissipation in the Brazil basin that reveal diffusivities of 2-4 cm2 s(-1) at a depth of 500 m above abyssal hills on the flank of the Mid-Atlantic Ridge, and approximately 10 cm2 s(-1) nearer the bottom. This amount of mixing, probably driven by breaking internal waves that are generated by tidal currents flowing over the rough bathymetry, may be large enough to close the buoyancy budget for the Brazil basin and suggests a mechanism for closing the global overturning circulation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号