首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
研究方法   3篇
综合类   1篇
  2004年   1篇
  1999年   1篇
  1992年   1篇
  1987年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Molecular genetic evidence for heterogeneity in manic depression   总被引:7,自引:0,他引:7  
Manic depression is a severe cyclic mental illness that can be unipolar or bipolar and has a lifetime risk of approximately 7 per 1,000 in most populations. Families with multiple cases of manic depression have been described that are compatible with both autosomal dominant and X-linked modes of genetic transmission. Psychoactive antidepressant and stimulant drugs that help to ameliorate depression and mania are thought to act by affecting catecholamine neurotransmitter systems such as adrenaline, noradrenaline and dopamine, amongst others. Mutations affecting the tyrosine hydroxylase (TH) gene, which encodes the rate-limiting enzyme for the synthesis of these three neurotransmitters, might therefore be responsible for causing the manic depressive phenotype. We have studied three Icelandic kindreds amongst whom it appears that a single autosomal dominant disease allele is segregating. In these families there were 44 cases amongst 73 individuals at risk. Genetic linkage studies were carried out using clones encoding tyrosine hydroxylase the variable portion of the Harvey-ras-1 (HRAS1) locus and the variable region of the insulin gene (INS). All three markers are closely linked on chromosome 11 and were used to observe the segregation of restriction fragment length polymorphisms (RFLPs) in the three affected kindreds. We found no evidence for linkage to these markers in any of the three families. In contrast, Gerhard et al. found linkage between manic depression and HRAS1 in a single large Amish kindred. We conclude that there is genetic heterogeneity of linkage in manic depression. Therefore mutations at different loci are responsible for the manic depressive phenotype in the Amish and in Iceland.  相似文献   
2.
3.
Several families with an early-onset form of familial Alzheimer's disease have been found to harbour mutations at a specific codon (717) of the gene for the beta-amyloid precursor protein (APP) on chromosome 21. We now report, a novel base mutation in the same exon of the APP gene which co-segregates in one family with presenile dementia and cerebral haemorrhage due to cerebral amyloid angiopathy. The mutation results in the substitution of alanine into glycine at codon 692. These results suggest that the clinically distinct entities, presenile dementia and cerebral amyloid angiopathy, can be caused by the same mutation in the APP gene.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号