首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
理论与方法论   1篇
研究方法   1篇
综合类   5篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1995年   1篇
  1989年   1篇
排序方式: 共有7条查询结果,搜索用时 703 毫秒
1
1.
An isolated defect of respiratory chain complex I activity is a frequent biochemical abnormality in mitochondrial disorders. Despite intensive investigation in recent years, in most instances, the molecular basis underpinning complex I defects remains unknown. We report whole-exome sequencing of a single individual with severe, isolated complex I deficiency. This analysis, followed by filtering with a prioritization of mitochondrial proteins, led us to identify compound heterozygous mutations in ACAD9, which encodes a poorly understood member of the mitochondrial acyl-CoA dehydrogenase protein family. We demonstrated the pathogenic role of the ACAD9 variants by the correction of the complex I defect on expression of the wildtype ACAD9 protein in fibroblasts derived from affected individuals. ACAD9 screening of 120 additional complex I-defective index cases led us to identify two additional unrelated cases and a total of five pathogenic ACAD9 alleles.  相似文献   
2.
Mutational analysis of a protein-folding pathway   总被引:6,自引:0,他引:6  
The effects of amino-acid replacements on the disulphide-coupled folding pathway of bovine pancreatic trypsin inhibitor have been examined. Replacements at three sites destabilize the native protein relative to the unfolded state, but have different effects on the relative stabilities of the disulphide-bonded folding intermediates, thus allowing the roles of the altered residues during folding to be distinguished.  相似文献   
3.
Ground granulated blast furnace slag(GGBFS)and steelmaking slag have been used as a raw material for cement production or as an aggregate to make concrete,which contribute aluminum,calcium,iron,and silicon oxides.The suitability of the slag for a particular application depends on its reactivity,cost,availability,and its influence on the properties of the resulting concrete.For the interest of durability studying of concrete in the presence of slag,the accelerated carbonation products and leaching behavior of the slag and Portland cement(PC)were studied.The experimental results confirmed that the slag was more resistant to carbonation compared to PC.The carbonation degree of GGBFS reduced by 17.74%;and the carbonation degrees of steelmaking slags reduced by 9.51%-11.94%.Carbonation neutralized the alkaline nature of the hydrated pastes and gave rise to the redox potential of the leachate slightly(30-77 mV).The carbonation also increased the release of most of the elements presented,except for calcium,to the aqueous environment.It is concluded that blend cements(PC plus slag)have economical advantages and better durability compared to PC.  相似文献   
4.
5.
Bizzarro M  Baker JA  Haack H  Ulfbeck D  Rosing M 《Nature》2003,421(6926):931-933
The 176Lu to 176Hf decay series has been widely used to understand the nature of Earth's early crust-mantle system. The interpretation, however, of Lu-Hf isotope data requires accurate knowledge of the radioactive decay constant of 176Lu (lambda176Lu), as well as bulk-Earth reference parameters. A recent calibration of the lambda176Lu value calls for the presence of highly unradiogenic hafnium in terrestrial zircons with ages greater than 3.9 Gyr, implying widespread continental crust extraction from an isotopically enriched mantle source more than 4.3 Gyr ago, but does not provide evidence for a complementary depleted mantle reservoir. Here we report Lu-Hf isotope measurements of different Solar System objects including chondrites and basaltic eucrites. The chondrites define a Lu-Hf isochron with an initial 176Hf/177Hf ratio of 0.279628 +/- 0.000047, corresponding to lambda176Lu = 1.983 +/- 0.033 x 10-11 yr-1 using an age of 4.56 Gyr for the chondrite-forming event. This lambda176Lu value indicates that Earth's oldest minerals were derived from melts of a mantle source with a time-integrated history of depletion rather than enrichment. The depletion event must have occurred no later than 320 Myr after planetary accretion, consistent with timing inferred from extinct radionuclides.  相似文献   
6.
Baker J  Bizzarro M  Wittig N  Connelly J  Haack H 《Nature》2005,436(7054):1127-1131
Long- and short-lived radioactive isotopes and their daughter products in meteorites are chronometers that can test models for Solar System formation. Differentiated meteorites come from parent bodies that were once molten and separated into metal cores and silicate mantles. Mineral ages for these meteorites, however, are typically younger than age constraints for planetesimal differentiation. Such young ages indicate that the energy required to melt their parent bodies could not have come from the most likely heat source-radioactive decay of short-lived nuclides ((26)Al and (60)Fe) injected from a nearby supernova-because these would have largely decayed by the time of melting. Here we report an age of 4.5662 +/- 0.0001 billion years (based on Pb-Pb dating) for basaltic angrites, which is only 1 Myr younger than the currently accepted minimum age of the Solar System and corresponds to a time when (26)Al and (60)Fe decay could have triggered planetesimal melting. Small (26)Mg excesses in bulk angrite samples confirm that (26)Al decay contributed to the melting of their parent body. These results indicate that the accretion of differentiated planetesimals pre-dated that of undifferentiated planetesimals, and reveals the minimum Solar System age to be 4.5695 +/- 0.0002 billion years.  相似文献   
7.
Bizzarro M  Baker JA  Haack H 《Nature》2004,431(7006):275-278
Primitive or undifferentiated meteorites (chondrites) date back to the origin of the Solar System, and thus preserve a record of the physical and chemical processes that occurred during the earliest evolution of the accretion disk surrounding the young Sun. The oldest Solar System materials present within these meteorites are millimetre- to centimetre-sized calcium-aluminium-rich inclusions (CAIs) and ferromagnesian silicate spherules (chondrules), which probably originated by thermal processing of pre-existing nebula solids. Chondrules are currently believed to have formed approximately 2-3 million years (Myr) after CAIs (refs 5-10)--a timescale inconsistent with the dynamical lifespan of small particles in the early Solar System. Here, we report the presence of excess (26)Mg resulting from in situ decay of the short-lived (26)Al nuclide in CAIs and chondrules from the Allende meteorite. Six CAIs define an isochron corresponding to an initial (26)Al/(27)Al ratio of (5.25 +/- 0.10) x 10(-5), and individual model ages with uncertainties as low as +/- 30,000 years, suggesting that these objects possibly formed over a period as short as 50,000 years. In contrast, the chondrules record a range of initial (26)Al/(27)Al ratios from (5.66 +/- 0.80) to (1.36 +/- 0.52) x 10(-5), indicating that Allende chondrule formation began contemporaneously with the formation of CAIs, and continued for at least 1.4 Myr. Chondrule formation processes recorded by Allende and other chondrites may have persisted for at least 2-3 Myr in the young Solar System.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号