首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
研究方法   4篇
综合类   4篇
  2004年   1篇
  2003年   1篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有8条查询结果,搜索用时 234 毫秒
1
1.
2.
The Duchenne muscular dystrophy (DMD) locus has been localized to the short arm of the human X chromosome (Xp21) by detection of structural abnormalities and by genetic linkage studies. A library highly enriched for human DNA from Xp21 was constructed using DNA isolated from a male patient who had a visible deletion and three X-linked disorders (DMD, retinitis pigmentosa and chronic granulomatous disease). Seven cloned DNA probes from this library and the probe 754 (refs 5, 8) are used in the present study to screen for deletions in the DNA isolated from 57 unrelated males with DMD. Five of these DMD males are shown to exhibit deletions for one of the cloned DNA segments and at least 38 kb of surrounding DNA. In addition, two subclones from the same region detect four restriction fragment length polymorphisms which exhibit no obligate recombination with DMD in 34 meiotic events. These new DNA segments will complement the existing Xp21 probes for use in carrier detection and prenatal diagnosis of DMD. Elucidation of the end points of the five deletions will help delineate the extent of the DMD locus and ultimately lead to an understanding of the specific sequences involved in DMD.  相似文献   
3.
X-linked spinal and bulbar muscular atrophy (Kennedy's disease) is an adult-onset form of motorneuron disease which may be associated with signs of androgen insensitivity. We have now investigated whether the androgen receptor gene on the proximal long arm of the X chromosome is a candidate gene for this disease. In patient samples we found androgen receptor gene mutations with increased size of a polymorphic tandem CAG repeat in the coding region. These amplified repeats were absolutely associated with the disease, being present in 35 unrelated patients and none of 75 controls. They segregated with the disease in 15 families, with no recombination in 61 meioses (the maximum log likelihood ratio (lod score) is 13.2 at a recombination rate of 0). The association is unlikely to be due to linkage disequilibrium, because 11 different disease alleles were observed. We conclude that enlargement of the CAG repeat in the androgen receptor gene is probably the cause of this disorder.  相似文献   
4.
5.
本文介绍了逐差法处理物理实验数据的基本方法和适用范围,表明了逐差法处理实验数据的优点.  相似文献   
6.
Expansion of the trinucleotide repeat (CAG)n in the first exon of the androgen receptor gene is associated with a rare motor neuron disorder, X-linked spinal and bulbar muscular atrophy. We have found that expanded (CAG)n alleles undergo alteration in length when transmitted from parent to offspring. Of 45 meioses examined, 12 (27%) demonstrated a change in CAG repeat number. Both expansions and contractions were observed, although their magnitude was small. There was a greater rate of instability in male meiosis than in female meiosis. We also found evidence for a correlation between disease severity and CAG repeat length, but other factors seem to contribute to the phenotypic variability in this disorder.  相似文献   
7.
Charcot-Marie-Tooth disease type 1A (CMT1A) is associated with a DNA duplication at chromosome 17p11.2. In view of the point mutation in the gene for peripheral myelin protein pmp-22/gas-3 in Trembler mice, a murine model for CMT1A, we have analysed whether this gene is altered in CMT1A. Here we show that the human homologue of the murine pmp-22 gene is located within the CMT1A DNA duplication, which is a direct repeat and does not interrupt the coding region of PMP-22. Expression of PMP-22 in CMT1A fibroblasts is similar to expression in control fibroblasts. Increased gene dosage or altered PMP-22 expression in the peripheral nervous system are therefore possible mechanisms by which PMP-22 is involved in CMT1A.  相似文献   
8.
Mutant dynactin in motor neuron disease   总被引:24,自引:0,他引:24  
Impaired axonal transport in motor neurons has been proposed as a mechanism for neuronal degeneration in motor neuron disease. Here we show linkage of a lower motor neuron disease to a region of 4 Mb at chromosome 2p13. Mutation analysis of a gene in this interval that encodes the largest subunit of the axonal transport protein dynactin showed a single base-pair change resulting in an amino-acid substitution that is predicted to distort the folding of dynactin's microtubule-binding domain. Binding assays show decreased binding of the mutant protein to microtubules. Our results show that dysfunction of dynactin-mediated transport can lead to human motor neuron disease.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号