首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   0篇
  国内免费   1篇
系统科学   3篇
理论与方法论   1篇
现状及发展   30篇
研究方法   27篇
综合类   50篇
自然研究   4篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   16篇
  2011年   19篇
  2010年   5篇
  2009年   1篇
  2008年   10篇
  2007年   12篇
  2006年   6篇
  2005年   8篇
  2004年   3篇
  2003年   4篇
  2002年   7篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
  1963年   1篇
  1961年   1篇
排序方式: 共有115条查询结果,搜索用时 269 毫秒
1.
2.
3.
Stem and progenitor cells are characterized by their ability to self-renew and produce differentiated progeny. A fine balance between these processes is achieved through controlled asymmetric divisions and is necessary to generate cellular diversity during development and to maintain adult tissue homeostasis. Disruption of this balance may result in premature depletion of the stem/progenitor cell pool, or abnormal growth. In many tissues, including the brain, dysregulated asymmetric divisions are associated with cancer. Whether there is a causal relationship between asymmetric cell division defects and cancer initiation is as yet not known. Here, we review the cellular and molecular mechanisms that regulate asymmetric cell divisions in the neural lineage and discuss the potential connections between this regulatory machinery and cancer.  相似文献   
4.
Human CtIP promotes DNA end resection   总被引:3,自引:0,他引:3  
Sartori AA  Lukas C  Coates J  Mistrik M  Fu S  Bartek J  Baer R  Lukas J  Jackson SP 《Nature》2007,450(7169):509-514
In the S and G2 phases of the cell cycle, DNA double-strand breaks (DSBs) are processed into single-stranded DNA, triggering ATR-dependent checkpoint signalling and DSB repair by homologous recombination. Previous work has implicated the MRE11 complex in such DSB-processing events. Here, we show that the human CtIP (RBBP8) protein confers resistance to DSB-inducing agents and is recruited to DSBs exclusively in the S and G2 cell-cycle phases. Moreover, we reveal that CtIP is required for DSB resection, and thereby for recruitment of replication protein A (RPA) and the protein kinase ATR to DSBs, and for the ensuing ATR activation. Furthermore, we establish that CtIP physically and functionally interacts with the MRE11 complex, and that both CtIP and MRE11 are required for efficient homologous recombination. Finally, we reveal that CtIP has sequence homology with Sae2, which is involved in MRE11-dependent DSB processing in yeast. These findings establish evolutionarily conserved roles for CtIP-like proteins in controlling DSB resection, checkpoint signalling and homologous recombination.  相似文献   
5.
A subset of neurons in the brain, known as 'glucose-excited' neurons, depolarize and increase their firing rate in response to increases in extracellular glucose. Similar to insulin secretion by pancreatic beta-cells, glucose excitation of neurons is driven by ATP-mediated closure of ATP-sensitive potassium (K(ATP)) channels. Although beta-cell-like glucose sensing in neurons is well established, its physiological relevance and contribution to disease states such as type 2 diabetes remain unknown. To address these issues, we disrupted glucose sensing in glucose-excited pro-opiomelanocortin (POMC) neurons via transgenic expression of a mutant Kir6.2 subunit (encoded by the Kcnj11 gene) that prevents ATP-mediated closure of K(ATP) channels. Here we show that this genetic manipulation impaired the whole-body response to a systemic glucose load, demonstrating a role for glucose sensing by POMC neurons in the overall physiological control of blood glucose. We also found that glucose sensing by POMC neurons became defective in obese mice on a high-fat diet, suggesting that loss of glucose sensing by neurons has a role in the development of type 2 diabetes. The mechanism for obesity-induced loss of glucose sensing in POMC neurons involves uncoupling protein 2 (UCP2), a mitochondrial protein that impairs glucose-stimulated ATP production. UCP2 negatively regulates glucose sensing in POMC neurons. We found that genetic deletion of Ucp2 prevents obesity-induced loss of glucose sensing, and that acute pharmacological inhibition of UCP2 reverses loss of glucose sensing. We conclude that obesity-induced, UCP2-mediated loss of glucose sensing in glucose-excited neurons might have a pathogenic role in the development of type 2 diabetes.  相似文献   
6.
Gray-Schopfer V  Wellbrock C  Marais R 《Nature》2007,445(7130):851-857
Melanoma is a cancer that arises from melanocytes, specialized pigmented cells that are found predominantly in the skin. The incidence of melanoma is rising steadily in western populations--the number of cases worldwide has doubled in the past 20 years. In its early stages malignant melanoma can be cured by surgical resection, but once it has progressed to the metastatic stage it is extremely difficult to treat and does not respond to current therapies. Recent discoveries in cell signalling have provided greater understanding of the biology that underlies melanoma, and these advances are being exploited to provide targeted drugs and new therapeutic approaches.  相似文献   
7.
Is there a decline in marine phytoplankton?   总被引:1,自引:0,他引:1  
  相似文献   
8.
We identified de novo truncating mutations in ARID1B in three individuals with Coffin-Siris syndrome (CSS) by exome sequencing. Array-based copy-number variation (CNV) analysis in 2,000 individuals with intellectual disability revealed deletions encompassing ARID1B in 3 subjects with phenotypes partially overlapping that of CSS. Taken together with published data, these results indicate that haploinsufficiency of the ARID1B gene, which encodes an epigenetic modifier of chromatin structure, is an important cause of CSS and is potentially a common cause of intellectual disability and speech impairment.  相似文献   
9.
SIRT1, an ubiquitous NAD(+)-dependent deacetylase that plays a role in biological processes such as longevity and stress response, is significantly activated in response to reactive oxygen species (ROS) production. Resveratrol (Resv), an important activator of SIRT1, has been shown to exert major health benefits in diseases associated with oxidative stress. In ischemia-reperfusion (IR) injury, a major role has been attributed to the mitogen-activated protein kinase (MAPK) pathway, which is upregulated in response to a variety of stress stimuli, including oxidative stress. In neonatal rat ventricular cardiomyocytes subjected to simulated IR, the effect of Resv-induced SIRT1 activation and the relationships with the MAPK pathway were investigated. Resv-induced SIRT1 overexpression protected cardiomyocytes from oxidative injury, mitochondrial dysfunction, and cell death induced by IR. For the first time, we demonstrate that SIRT1 overexpression positively affects the MAPK pathway-via Akt/ASK1 signaling-by reducing p38 and JNK phosphorylation and increasing ERK phosphorylation. These results reveal a new protective mechanism elicited by Resv-induced SIRT1 activation in IR tissues and suggest novel potential therapeutic targets to manage IR-induced cardiac dysfunction.  相似文献   
10.
Multidisciplinary investigations at the Los Ajos archaeological mound complex in the wetlands of southeastern Uruguay challenge the traditional view that the La Plata basin was inhabited by simple groups of hunters and gatherers for much of the pre-Hispanic era. Here we report new archaeological, palaeoecological and botanical data indicating that during an increasingly drier mid-Holocene, at around 4,190 radiocarbon (14C) years before present (bp), Los Ajos became a permanent circular plaza village, and its inhabitants adopted the earliest cultivars known in southern South America. The architectural plan of Los Ajos during the following Ceramic Mound Period (around 3,000-500 14C yr bp) is similar to, but earlier than, settlement patterns demonstrated in Amazonia, revealing a new and independent architectural tradition for South America.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号